
- •1. Введение
- •1.1 Что такое цифровые микросхемы. Виды цифровых микросхем
- •1.2 Области применения цифровых микросхем
- •1.3 Виды цифровых микросхем.
- •Условные графические изображения цифровых микросхем (гост)
- •Параметры цифровых микросхем
- •Уровни логического нуля и единицы
- •Входные и выходные токи цифровых микросхем
- •Параметры, определяющие быстродействие цифровых микросхем
- •Описание логической функции цифровых схем
- •Логические элементы.
- •2.1 Логические элементы
- •Инвертор
- •Логический элемент "и"
- •Логический элемент "или"
- •2.2 Диодно-транзисторная логика (дтл)
- •2.3 Транзисторно-транзисторная логика (ттл)
- •2.4 Цифровые логические микросхемы, выполненные на комплементарных моп транзисторах (кмоп) Логические кмоп (кмдп) инверторы
- •Логические кмоп (кмдп) элементы "и"
- •Логические кмоп (кмдп) элементы "или"
- •Особенности применения кмоп микросхем
- •Логические уровни кмоп микросхем
- •2.5 Согласование цифровых микросхем различных серий между
- •Согласование микросхем из различных серий между собой
- •Согласование микросхем с различным напряжением питания
- •Глава 2
- •2.6 Триггер Шмитта
- •3.Арифметические основы цифровой техники.
- •Глава 1 Арифметические основы цифровой техники
- •3.1 Системы счисления
- •Десятичная система счисления
- •Двоичная система счисления
- •4.2 Синтез цифровых комбинационных схем по произвольной таблице истинности
- •Совершенная дизъюктивная нормальная форма (сднф)
- •Совершенная конъюктивная нормальная форма (скнф)
- •4.3 Дешифраторы (декодеры)
- •Десятичный дешифратор (декодер)
- •4.5 Мультиплексоры
- •Особенности построения мультиплексоров на ттл элементах
- •4.6 Демультиплексоры
- •5.Генераторы
- •5.1 Генераторы периодических сигналов
- •5.3 Мультивибраторы
- •5.4 Особенности кварцевой стабилизации частоты цифровых генераторов
- •5.5 Одновибраторы (ждущие мультивибраторы)
- •Укорачивающие одновибраторы
- •Расширяющие одновибраторы (ждущие мультивибраторы)
- •6. Последовательностные устройства (цифровые устройства с памятью)
- •6.1 Триггеры
- •6.1.2 Rs триггер
- •6.1.3 D триггеры, работающие по потенциалу (статические d триггеры)
- •6.1.5 D триггеры, работающие по фронту (динамические d триггеры)
- •6.1.6 T триггеры
- •6.1.7 Jk триггер
- •6.2 Регистры
- •6.2.1 Параллельные регистры
- •6.2.2 Последовательные (сдвиговые) регистры
- •6.2.3 Универсальные регистры
- •6.3 Счётчики
- •6.3.1 Двоичные асинхронные счётчики
- •6.3.2 Недвоичные счётчики с обратной связью
- •6.3.3 Недвоичные счётчики с предварительной записью
- •6.3.5 Синхронные двоичные счётчики
- •7.Современные виды цифровых микросхем.
- •7.1 Микросхемы малой степени интеграции (малая логика)
- •7.2 Программируемые логические интегральные схемы (плис).
- •7.3 Программируемые логические матрицы.
- •7.4 Программируемые матрицы логики (pal).
- •7.5 Сложные программируемые логические устройства (cpld).
- •10. Особенности аналого-цифрового и цифро-аналогового преобразования.
- •10.1 Квантование аналогового сигнала по времени
- •10.2 Погрешности дискретизатора
- •10.3 Фильтры устранения эффекта наложения спектров (Антиалайзинговые фильтры)
- •10.5 Параллельные ацп (flash adc)
- •10.6 Последовательно-параллельные ацп
- •10.7 Ацп последовательного приближения (sar adc)
- •10.9 Цифроаналоговые преобразователи (цап) с суммированием токов
- •10.10 Цифроаналоговые преобразователи r-2r
- •11. Микросхемы цифровой обработки сигналов
- •11.1 Основные блоки цифровой обработки сигналов
- •11.1.1 Двоичные сумматоры
Десятичный дешифратор (декодер)
Рассмотрим пример построения дешифратора (декодера) из двоичного кода в десятичный. Десятичный код обычно отображается одним битом на одну десятичную цифру. Это классический пример, иллюстрирующий, что нулями и единицами описываются не только двоичные коды. В десятичном коде десять цифр, поэтому для отображения одного десятичного разряда требуется десять выходов дешифратора. Около каждого разряда десятичного кода подписана десятичная цифра, которую отображает логическая единица в этом разряде. Сигнал с этих выводов дешифратора можно подать на десятичный индикатор. В простейшем случае над светодиодом можно просто подписать индицируемую цифру. На входе дешифратора двоичный код записывается в соответствии с правилами двоичной системы счисления. Таблица истинности десятичного декодера приведена в таблице 3.1.
Таблица 3.1. Таблица истинности десятичного декодера.
Входы Двоичная форма |
Выходы Десятичная форма | ||||||||||||
8 |
4 |
2 |
1 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
В соответствии с принципами построения схемы по произвольной таблице истинности получим схему декодера, реализующего таблицу истинности, приведённую в таблице 3.1. Эта схема приведена на рисунке 3.1.
Рисунок 3.1.
Принципиальная схема двоично-десятичного
дешифратора (декодера).
Как видно на этой схеме для реализации каждой строки таблицы истинности потребовалась схема "4И". Схема "ИЛИ" не потребовалась, так как в таблице истинности на каждом выходе присутствует только одна единица.
Дешифраторы выпускаются в виде отдельных микросхем или используются в составе других микросхем. В настоящее время десятичные или восьмеричные дешифраторы используются в основном как составная часть других микросхем, таких как мультиплексоры, демультиплексоры, ПЗУ или ОЗУ.
Условно-графическое обозначение микросхемы дешифратора на принципиальных схемах приведено на рисунке 3.2. На этом рисунке приведено обозначение двоично-десятичного дешифратора, полная внутренняя принципиальная схема которого изображена на рисунке 3.1.
Рисунок 3.2. Условно-графическое
обозначение двоично-десятичного
дешифратора.
Точно таким же образом можно получить принципиальную схему и для любого другого декодера (дешифратора). Наиболее распространены схемы восьмеричных и шестнадцатеричных дешифраторов. Для индикации такие дешифраторы в настоящее время практически не используются. В основном такие дешифраторы используются как составная часть более сложных цифровых модулей.