Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Оглавление.docx
Скачиваний:
51
Добавлен:
02.05.2015
Размер:
210.29 Кб
Скачать

2.2 Производство алюминия

2.2.1 Свойства алюминия и области его применения

Алюминий — химический элемент третьей группы периодической систе-

мы элементов Д. И. Менделеева. Его порядковый номер 13, атомная масса

26,98. Устойчивых изотопов алюминии не имеет.

Химические свойства

Взаимодействие с неметаллами

С кислородом взаимодействует только в мелкораздробленном состоянии при высокой температуре:

4Al + 3O2 = 2Al2O3,

реакция сопровождается большим выделением тепла.

Выше 200°С реагирует с серой с образованием сульфида алюминия:

2Al + 3S = Al2S3.

При 500°С – с фосфором, образуя фосфид алюминия:

Al + P = AlP.

При 800°С реагирует с азотом, а при 2000°С – с углеродом, образуя нитрид и карбид:

2Al + N2 = 2AlN,

4Al + 3C = Al4C3.

С хлором и бромом взаимодействует при обычных условиях, а с йодом при нагревании, в присутствии воды в качестве катализатора:

2Al + 3Cl2 = 2AlCl3

С водородом непосредственно не взаимодействует.

С металлами образует сплавы, которые содержат интерметаллические соединения – алюминиды, например, CuAl2, CrAl7, FeAl3 и др.

Взаимодействие с водой 

Очищенный от оксидной пленки алюминий энергично взаимодействует с водой:

2Al + 6H2O = 2Al(OH)3 + 3H2

в результате реакции образуется малорастворимый гидроксид алюминия и выделяется водород.

Взаимодействие с кислотами

Легко взаимодействует с разбавленными кислотами, образуя соли:

2Al + 6HCl = 2AlCl3 + 3H2;

2Al + 3H2SO4 = Al2(SO4)3 + 3H2;

8Al + 30HNO3 = 8Al(NO3)3 + 3N2O + 15H2O (в качестве продукта восстановления азотной кислоты также может быть азот и нитрат аммония).

С концентрированной азотной и серной кислотами при комнатной температуре не взаимодействует, при нагревании реагирует с образованием соли и продукта восстановления кислоты:

2Al + 6H2SO4 = Al2(SO4)3 + 3SO2 + 6H2O;

Al + 6HNO3 = Al(NO3)3 + 3NO2 + 3H2O.

Взаимодействие со щелочами

Алюминий – амфотерный металл, он легко реагирует со щелочами:

в растворе с образованием тетрагидроксодиакваалюмината натрия:

2Al + 2NaOH + 10H2O = 2Na[Al(H2O)2(OH)4] + 3H2

при сплавлении с образованием алюминатов:

2Al + 6KOH = 2KAlO2 + 2K2O + 3H2.

Восстановление металлов из оксидов и солей

Алюминий – активный металл, способен вытеснять металлы из их оксидов. Это свойство алюминия нашло практическое применение в металлургии:

2Al + Cr2O3 = 2Cr + Al2O3.

Области применения

Алюминий обладает целым рядом свойств, которые выгодно отличают его от других металлов. Это − небольшая плотность алюминия, хорошая пластичность и достаточная механическая прочность, высокие тепло- и электропроводность. Алюминий нетоксичен, немагнитен и коррозионностоек к ряду химических веществ. Благодаря всем этим свойствам, а также относительно невысокой стоимости по сравнению с другими цветными металлами он нашел исключительно широкое применение в самых различных отраслях современной техники.

Значительная часть алюминия используется в виде сплавов с кремнием медью, магнием, цинком, марганцем и другими металлами. Промышленные алюминиевые сплавы обычно содержат не менее двух−трех легирующих элементов, которые вводятся в алюминий главным образом для повышения механической прочности.

Наиболее ценные свойства всех алюминиевых сплавов − малая плотность

(2,65÷2,8), высокая удельная прочность (отношение временного сопротивления к плотности) и удовлетворительная стойкость против атмосферной коррозии.

Алюминиевые сплавы подразделяют на деформируемые и литейные. Деформируемые сплавы подвергают горячей и холодной обработке давлением, поэтому они должны обладать высокой пластичностью. Из деформируемых сплавов широкое применение нашли дуралюмины − сплавы алюминия с медью, магнием и марганцем. Имея небольшую плотность, дуралюмины по механическим свойствам близки к мягким сортам стали. Из деформируемых

алюминиевых сплавов, а также из чистого алюминия в результате обработки давлением (прокатка, штамповка) получают листы, полосы, фольгу, проволоку, стержни различного профиля, трубы. Расход алюминия на изготовление этих полуфабрикатов составляет около 70 % его мирового производства.

Остальной алюминий применяется для изготовления литейных сплавов, порошков, раскислителей, а также для других целей.

Из литейных сплавов получают фасонные отливки различной конфигурации. Широко известны литейные сплавы на основе алюминия − силумины, в которых основной легирующей добавкой служит кремний (до 13%).

В настоящее время алюминий и его сплавы используют практически во всех областях современной техники. Важнейшие потребители алюминия и его сплавов — авиационная и автомобильная отрасли промышленности, железнодорожный и водный транспорт, машиностроение, электротехническая промышленность и приборостроение, промышленное и гражданское строительство, химическая промышленность, производство предметов народного потребления.

Использование алюминия и его сплавов во всех видах транспорта и в первую очередь − воздушного позволило решить задачу уменьшения собственной (“мертвой”) массы транспортных средств и резко увеличить эффективность их

применения. Из алюминия и его сплавов изготавливают авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач, насосы и другие детали.

Алюминием и его сплавами отделывают железнодорожные вагоны, изготавливают корпуса и дымовые трубы судов, спасательные лодки, радарные мачты, трапы.

Широко применяют алюминий и его сплавы в электротехнической промышленности для изготовления кабелей, шинопроводов, конденсаторов, выпрямителей переменного тока. В приборостроении алюминий и его сплавы используют в производстве кино- и фотоаппаратуры, радиотелефонной аппаратуры, различных контрольно-измерительных приборов.

Благодаря высокой коррозионной стойкости и нетоксичности алюминий широко применяют при изготовлении аппаратуры для производства и хранения крепкой азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов. Алюминиевая фольга, будучи прочнее и дешевле оловянной, полностью вытеснила ее как упаковочный материал для пищевых продуктов. Все более широко используется алюминий при изготовлении тары для консервирования и хранения продуктов сельского хозяйства, для строительства зернохранилищ и других быстровозводимых сооружений. Являясь одним из важнейших стратегических металлов, алюминий, как и его сплавы, широко используется в строительстве самолетов, танков, артиллерийских установок, ракет, зажигательных веществ, а также для других целей в военной технике.

Алюминий высокой чистоты находит широкое применение в новых областях техники − ядерной энергетике, полупроводниковой электронике, радиолокации, а также для защиты металлических поверхностей от действия раз личных химических веществ и атмосферной коррозии. Высокая отражающая способность такого алюминия используется для изготовления из него отражающих поверхностей нагревательных и осветительных рефлекторов и зеркал.

В металлургической промышленности алюминий используют в качестве восстановителя при получении ряда металлов (например, хрома, кальция, марганца) алюмотермическими способами, для раскисления стали, сварки стальных деталей.

Широко применяют алюминий и его сплавы в промышленном и гражданском строительстве для изготовления каркасов зданий, ферм, оконных рам, лестниц и др. По масштабам производства и значению в народном хозяйстве алюминий прочно занял первое место среди других цветных металлов.