
- •2. Закон Вебера-Фехнера .
- •3. Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине.
- •6. Медицинская вискозиметрия. Принцип работы мед вискозиметра.
- •7..Явление пов натяжения. Капиллярность. Причины газовой и жировой эмболии сосудов.
- •8.Сочленения и рычаги в опорно-двигательном аппарате человека; механическая работа человека эргометрия.*
- •10. Первичное действие постоянного тока и переменными электрическими токами на организм. Механизмы гальванизации и электрофореза.
- •12.Воздействие на живые ткани электрическим полем увч-частот.
- •16. Инфракрасное излучение. Диапазоны инфракрасного излучения. Применение в медицине.
- •17.Медицинская поляриметрия. Оптическая активность веществ (примеры оптически активных тканей в организме человека. Строение и принцип работы поляриметра-сахариметра.
- •18.1.Характеристики теплового излучения.2. Абсолютно чёрное тело. 3.Закон Кирхгофа.
- •4.Законы излучения абсолютно чёрного тела (Стефана-Больцмана, Вина).
- •2. Абсолютно чёрное тело.
- •3.Закон Кирхгофа.
- •4.Законы излучения абсолютно чёрного тела (Стефана-Больцмана, Вина).
- •19.Спектр излучения абсолютно черного тела.
- •20.Тормозное рентгеновское излучение. Строение, принцип работы и характеристики рентгеновской трубки.
- •21.Понятие о контрасте и контрастном рентгеновском изображении. Защита от рентгеновского излучения. Технический принцип рентгенографии и рентгеноскопии.
- •22.Биофизические основы действия ионизирующих излучений на организм. Радиолиз воды.
- •23. Напряжения и деформации. Их виды. Меры деформаций. Законы упругой деформации.
- •28. Определение коэффициента линейного теплового расширения. Влияние температуры,фактора времени, агрессивных сред и влажности на характеристики металлов.
- •29.Механические методы испытания металлов- твердость по: Бринелю, Роквеллу, Виккерсу, Кнупу, Шору.
- •30. Основные модели биологических тканей , сочетающие упругие и вязкие элементы (модели: упругого элемента, вязкого элемента, Кельвина Фойгта, Максвелла, Зинера)
1.Звук- механические колебания и волны, распространяющиеся в упругих средах в виде продольных волн с частотой от 16 Гц до 20000 Гц и воспринимаемые человеческим ухом.Субъективные характеристики звука:1Тембр – «окраска» звука и определяется его гармоническим спектром. Различные акустические спектры соответствуют разному тембру, даже в том случае, когда основной тон у них одинаков. Тембр – качественная характеристика звука.
2Высота тона - субъективная оценка звукового сигнала, зависящая от частоты звука и его интенсивности. Чем больше частота, главным образом основного тона, тем ниже высота воспринимаемого звука.
3Громкость – также субъективная оценка, характеризующая уровень интенсивности.
Объективные характеристики: интенсивность-энергия проносимая звуковой волной за единицу времени через единицу площади.
Частота основного тона, кол-во обертонов.
2. Закон Вебера-Фехнера .
Громкость может быть оценена колич путем, те сравнение слух ощущ от 2 источников. В основе шкалы уровней громкости лежит важный психофиз закон Вебера-Фехнера: «Если увел раздраж в геометр прогрессии, то ощущ этого раздр увел в арифм прогрессии». Применительно к звуку это означает, что если интенс звука прин ряд послед значений аI0,а²I0, а³I0 и тд, то соовт им ощущ громкости звука, будет Е0, 2Е0, 3Е0 и тд. Матем запись закона В-Ф: Eб=klgI/ I0. В общем случае: Еф=10klgI/ I0. Условились считать, что на частоте 1 кГц шкалы интенс и громк совпадают и k=1. Для отл от шкалы интенс в шлаке громкости дБ назыв фонами. Громкость на др частотах можно изм сравнивая исслед звук с частотой 1кГц. Для этого с пом звук генератора (эл прибор генерирующий частоты колеб в Зв диапозоне), созд ν=1кГц. Затем изм интенс до тех пор, пока не возн слух ощущение ананлог ощущу громкости исслед звука. У звука частотой 1кГц в дБ дБ, измеряемая по прибору, равна громкости этого звука в фонах.
Кривые
равной громкости. Зависимость громкости
от частоты колебаний в системк звуковых
измерений определяется на основании
экспериментальных данных при помощи
графиков, которые назыв К-р-г. Эти кривые
характеризуют зависимость уровня
интенсивности L
от частоты υ звука при постоянном уровне
громкости. Кривые называют изофонами.
Нижняя изофона соответствует порогу
слышимости (Е=0 фон), верхняя показывает
предел чувствительности уха, когда
слуховое ощущение переходит в ощущение
боли (Е=120 фон)
3. Аудиограмма. Аудиометрия. Графики, пояснения, применение в медицине.
Метод измерения остроты слуха называют аудиометрией. При аудиометрии на аудиометре определяют порог слухового ощущения на разных частотах. Полученная кривая называется аудиограммой.
Аудиограмма - это график, отображающий состояние слуха человека.
По горизонтальной оси откладываются частоты (от 125 до 8000 Гц), а по вертикальной – пороги слышимости на соответствующих частотах, т.е. минимальные уровни звукового давления сигнала, при которых пациент слышит звук. При построении аудиограммы значения этих порогов измеряются специальным прибором – аудиометром.
По характеру данного графика можно судить о нарушениях органа слуха и методах и их коррекции.
Кривой порога слышимости называют график зависимости (минимальной) интенсивности звука, способного создать слуховое ощущение от частоты этого звука. Этот график приведен на рисунке в пункте 11. Как и кривые одинаковой громкости они имеют провал - минимум на частотах 1000 - 4000 Гц, что указывает на то, что наше ухо наиболее чувствительно именно к этим частотам.
4..Инфразвук, диапазон частот; эффекты и механизмы воздействия на организм человека
Инфразвук – акустические волны с частотой колебаний меньше 16Гц. Одним из самых важных свойств инфразвука является его способность распространяться на большие расстояния в различных средах.
Тк длина волны инфразвука больше, чем у слышимых звуков то инфразвук волны лучше дифрагируют и проникают в помещение, обходя преграды. Воздействие инфразвука происходит не только через слуховой анализатор, но и через механорецепторы кожи. Возникающие нервные импульсы нарушают согласованную работу различных отделов нервной системы, что может проявляться головокружением, болями в животе, тошнотой, затрудненным дыханием, чувством страха, при более интенсивном и продолжительном воздействии - кашлем, удушьем, нарушением психики. Поражающее действие инфразвука зависит от его силы и интенсивности. Инфразвуковые колебания небольшой интенсивности вызывают тошноту и звон в ушах, уменьшают остроту зрения. Нарушения, связанные с расстройствами зрительного аппарата проявляются отличием друг от друга картин, создаваемых левым и правым глазом, начинает «ломаться» горизонт. При длительном воздействии возникают проблемы с ориентацией в пространстве и в редких случаях слепота. Колебания средней интенсивности могут стать причиной расстройства пищеварения, сердечнососудистой, дыхательной систем, нарушения психики с самыми неожиданными последствиями. Инфразвук высокой интенсивности влекущий за собой резонанс , приводит к нарушению работы практически всех внутренних органов, к кровотечению из ушей и носа.
5..Ультразвук.
Ультразвуком
называют продольные механические
волны с частотами колебаний выше 20
КГц. В каждой среде скорость
распространения, как звука, так и
ультразвука – одинакова. Длина
ультразвуковых волн в воздухе меньше
чем 17 мМ
Источниками ультразвука являются специальные электромеханические излучатели. Один тип излучателей работают на основе явления магнитострикции, когда в переменном магнитном поле изменяются размеры некоторых тел.
Второй тип излучателей работает на основе пьезоэффекта, когда в переменном электрическом поле изменяются размеры некоторых тел. .
Особенности ультразвука.
Наиболее важной особенностью ультразвука является узость ультразвукового пучка, что позволяет воздействовать на какие-либо объекты локально. В неоднородных средах с мелкими включениями частиц, когда размеры включений примерно равны, но больше длины волны (L=λ) имеет место явление дифракции. Если размеры включений много больше длины волны имеет место прямолинейность распространения ультразвука. В этом случае можно получать ультразвуковые тени от таких включений, что используется при разл видах диагностики технической и медицинской. Важным теоретическим моментом при использовании ультразвука является прохождение ультразвука из одной среды в другую.
Частота при этом не изменяется. Скорость и длина волны при этом могут изменяться.
Проникновение УВ в другую среду характеризуется коэффициентом проникновения. Он определяется как отношение интенсивности волны попавшей во вторую среду к интенсивности, попавшей волны:
Этот коэффициент зависит от соотношения акустического импеданса двух сред.
Акустическим импедансом называют произведение плотности среды на скорость распространения волн в данной среде:
Коэф. Проникновения наибольший- близкий к 1, если акустический импеданс двух сред примерно равны.
Если импеданс второй среды больше, чем первой, то коэф. проникновения ничтожно мал. В однородных средах ультразвук поглощается по закону показательной функции.
Воздействие УВ на организм.
Три вида действия УВ:
- механическое
- тепловое
- химическое
Все три вида воздействия УВ на организм связано с явлением кавитации- это кратковременные возникновения микро полостей в местах разряжения волны.
УВ ускоряет протекание процессов диффузии и растворения, оказывает влияние на скорость химических реакций. УВ большой мощности вызывает гибель вирусов и бактерий. При малой мощности увеличивается проницаемость клеточных мембран и активизируются процессы обмена в тканях. Способность УВ волн оказывать механическое и тепловое действие на ткани лежит в основе УВ физиотерапии.
Локационные методы:
- эхоэнцефалография( определение опухолей и отека головного мозга)
-ультразвуковая кардиография ( измерение размеров сердца в динамике)
-ультразвуковая локация ( в офтальмологии).
Теменной метод основан на регистрации интенсивности УВ , прошедшего через исследуемый объект. В хирургии для резки костной ткани применяют УВ скальпель.