Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
30-50_1.docx
Скачиваний:
6
Добавлен:
02.05.2015
Размер:
627.83 Кб
Скачать

1. Гигиенические требования к качеству питьевой воды при централизованном водоснабжении.

Качество питьевой воды служит основой эпидемической безопасности и здоровья населения.

Гигиенические требования к качеству питьевой воды, производимой автономными системами водоснабжения, индивидуальными устройствами для приготовления воды, а также реализуемой населению в бутылях или контейнерах, устанавливаются специальными санитарными правилами и нормами. В санитарных правилах наряду с областью применения представлены показатели качества питьевой воды, требования к контролю за качеством, включающие необходимое число проб, место и время их взятия, ответственность должностных лиц.

В 1996 г. в Российской Федерации приняты первые санитарно-эпидемиологические правила и нормативы - СанПиН 2.1.4.559-96 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества». В 2002 г. вышло их 2-е издание, частично переработанное и дополненное - СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества», учитывающие современное санитарно-эпидемическое состояние окружающей среды, высокие требования к качеству питьевой воды и контролю за ним.

В соответствии с гигиеническими требованиями питьевая вода должна быть безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу и иметь благоприятные органолептические свойства. Качество питьевой воды должно соответствовать гигиеническим нормативам перед ее поступлением в распределительную сеть, в точках водозабора наружной и внутренней водопроводной сети.

Безопасность питьевой воды в эпидемическом отношении определяется ее соответствием нормативам по микробиологическим и паразитологическим показателям.

Показатели Единицы измерения Нормативы

Термотолерантные

колиформные бактерии Число бактерий в 100 мл1 Отсутствие

Общие колиформные

бактерии2 Число бактерий в 100 мл1 Отсутствие

Общее микробное

число2 Число образующих колонии бактерий в 1 мл Не более 50

Колифаги3 Число бляшкообразующих единиц (БОЕ) в 100 мл Отсутствие

Споры сульфитредуцирующих

клостридий4 Число спор в 20 мл Отсутствие

Цисты лямблий3 Число цист в 50 л Отсутствие

Примечания:

1 При определении проводится трехкратное исследование по 100 мл отобранной пробы воды.

2 Превышение норматива не допускается в 95% проб, отбираемых в точках водоразбора наружной и внутренней водопроводной сети в течение 12 мес, при количестве исследуемых проб не менее 100 за год.

3 Определение проводится только в системах водоснабжения из поверхностных источников перед подачей воды в распределительную сеть.

4 Определение проводится при оценке эффективности технологии обработки воды.

При обнаружении в пробе питьевой воды колиформных бактерий или колифагов их определяют в повторно взятых пробах воды. Одновременно определяют содержание хлоридов, аммонийного азота, нитритов и нитратов.

При обнаружении в повторно взятых пробах воды более 2 общих колиформных бактерий в 100 мл, термотолерантных колиформных бактерий и колифагов пробы воды исследуют на патогенные бактерии кишечной группы и энтеровирусы.

Безопасность питьевой воды по химическому составу определяется по обобщенным показателям, содержанию вредных химических веществ, наиболее часто встречающихся в природных водах на территории Российской Федерации, а также веществ антропогенного происхождения, получивших глобальное распространение. К этой группе относятся 22 неорганических и 3 органических вещества. Из них по органолептическому признаку вредности нормируется 6, а по санитарно-токсикологическому - 19 соединений.

Оценка ведется также по содержанию вредных химических веществ, поступающих и образующихся в воде в процессе ее обработки в системе водоснабжения, по содержанию вредных неорганических и органических химических веществ, поступающих в источники водоснабжения в результате хозяйственной деятельности человека. К ним относится более 1200 химических соединений.

При обнаружении в питьевой воде нескольких токсичных веществ, относящихся к 1-му и 2-му классам опасности и нормируемых по санитарно-токсикологическому признаку вредности, сумма отношений обнаруженных концентраций каждого из них в воде к ПДК не должна быть больше 1. Расчет ведется по формуле:

где С1, С2.., Сп - концентрации индивидуальных химических веществ 1-го и 2-го классов опасности фактическая (факт) и допустимая (доп).

Питьевая вода должна обладать благоприятными органолептическими свойствами, которые определяются нормативами по запаху, привкусу, цветности и мутности.

Таблица 6.7. Требования к органолептическим свойствам питьевой воды

Показатель Единицы измерения Нормативы, не более

Запах Баллы 2

Привкус Баллы 2

Цветность Градусы 20 (35)

Мутность ЕМФ(единицы мутности по формазину)или мг/л(по каолину) 2,6 (3,5) 1,5 (2)

Примечание. Величина, указанная в скобках, может быть установлена по постановлению главного государственного санитарного врача по соответствующей территории для конкретной системы водоснабжения на основании оценки санитарно-эпидемиологической обстановки в населенном пункте и применяемой технологии водоподготовки.

Впервые в санитарных правилах по питьевой воде определена радиационная безопасность, которая обусловливается ее соответствием нормативам по показателям общей альфа- и бета-активности. Общая альфа-радиоактивность не должна превышать 0,1 Бк/л, а общая бетарадиоактивность - 1,0 Бк/л воды. Идентификация присутствующих в воде радионуклидов и измерение их индивидуальных концентраций проводится при превышении нормативов общей активности.

Обобщенные показатели и содержание вредных химических веществ, наиболее часто встречающихся в природных водах на территории Российской Федерации, а также веществ антропогенного происхождения, получивших глобальное распространение:

Примечания:

1) Лимитирующий признак вредности вещества, по которому установлен норматив: "с.-т." - санитарно-токсикологический, "орг." - органолептический.

2) Величина, указанная в скобках, может быть установлена по постановлению главного государственного санитарного врача по соответствующей территории для конкретной системы водоснабжения на основании оценки санитарно-эпидемиологической обстановки в населенном пункте и применяемой технологии водоподготовки.

3) Нормативы приняты в соответствии с рекомендациями ВОЗ.

Содержание вредных химических веществ, поступающих и образующихся в воде в процессе ее обработки в системе водоснабжения:

Примечания:

1) При обеззараживании воды свободным хлором время его контакта с водой должно составлять не менее 30 минут, связанным хлором - не менее 60 минут.

Контроль за содержанием остаточного хлора производится перед подачей воды в распределительную сеть.

При одновременном присутствии в воде свободного и связанного хлора их общая концентрация не должна превышать 1,2 мг/л.

В отдельных случаях по согласованию с центром госсанэпиднадзора может быть допущена повышенная концентрация хлора в питьевой воде.

2) Норматив принят в соответствии с рекомендациями ВОЗ.

3) Контроль за содержанием остаточного озона производится после камеры смешения при обеспечении времени контакта не менее 12 минут.

Санитарные правила регламентируют также методы контроля за качеством воды. Предусмотрены отбор и анализ проб воды из водоемов в местах водозабора, исследование проб воды после очистки перед поступлением в распределительную сеть, а также в местах водопотребления. Число проб увеличивается при использовании поверхностных источников водоснабжения. Число исследований определяется также численностью населения, использующего воду данного источника. В некоторых случаях число проб из водоисточника для органолептических, химических, микробиологических и паразитологических исследований может достигать нескольких тысяч в год.

Содержание химических веществ в воде водных объектов хозяйственно-питьевого водопользования нормируется, исходя из следующих принципов:

1. химические вещества не должны придавать воде посторонних запахов и привкусов, изменять окраску воды, вызывать появление пены, т.е. ухудшать ее органолептичские свойства и потребительские качества.

2. оказывать неблагоприятное воздействие на организм человека.

3. оказывать неблагоприятное воздействие на процессы самоочищения водоемов.

Нормирование содержания химических и радиоактивных веществ в окружающей среде, в том числе и в воде, базируется на понятии «принципа пороговости», а именно, наличия определенных доз (концентраций), в пределах которых присутствие этих веществ может рассматриваться как безопасное, при этом в обязательном порядке должны учитываться отдаленные последствия.

Гигиеническая ПДК химического вещества в воде – максимальная концентрация, которая не оказывает прямого или опосредованного влияния на состояние здоровья настоящего и последующего поколений при воздействии на человека в течение всей жизни и не ухудшает гигиенические условия водопользования населения.

Установление ПДК осуществляется на основании трех критериев вредности:

1) органолептического – способность ухудшать органолептические свойства воды.

2) санитарно-токсикологического – оказывать вредное воздействие на организм человека, в том числе, вызывать отдаленные последствия.

3) общесанитарного – оказывать неблагоприятное воздействие на санитарный режим водоемов.

Исследование каждого химического вещества обязательно включает установление ПДК по всем трем признакам в отдельности с последующим выделением наименьшей величины. Она принимается как ПДК содержания химического вещества, признак, по которому устанавливается ПДК, называется лимитирующим.

В зависимости от степени опасности для человека химических веществ, загрязняющих воду: токсичности, кумулятивности, способности вызывать отдаленные эффекты, лимитирующего показателя вредности, все нормированные в воде химические вещества подразделяют на 4 класса:

I – чрезвычайно опасные

II – высокоопасные

III - опасные

IV – умеренно опасные.

2. Роль водного фактора в эпидемиологии неинфекционных заболеваний.

Вода, используемая для питьевых целей, не является химически чистым соединением. В ее состав входят сотни химических веществ в различных количествах.

Солевой состав природных вод формируется в первую очередь в результате вымывания веществ из почвы и в связи с этим отражает химическую структуру почвы данной местности. Медь, йод, бром в значительном количестве могут поступать из атмосферы.

Однако довольно часто химические вещества, находящиеся в воде, имеют не природное происхождение, а поступают в водоемы с хозяйственно-фекальными или промышленными стоками.

Известно, что в процессе самоочищения белковые соединения, подвергаясь окислению, последовательно превращаются в соли аммония, нитриты и нитраты. Нитраты - конечный продукт минерализации и в связи с этим они - наиболее стойкие из перечисленных азотсодержащих веществ. При недавнем загрязнении органическими веществами в водоеме преобладают начальные продукты разложения, т.е. соли аммония. Присутствие только солей азотной кислоты свидетельствует о давнем загрязнении. Триада соединений азота позволяет говорить о постоянном загрязнении воды водоема органическими веществами.

Сера и фосфор входят в состав белков. В связи с этим в процессе их распада образуются соли серной и фосфорной кислот. Роль индикатора, косвенного показателя хозяйственно-фекального загрязнения воды играют и хлориды, входящие в состав бытовых сточных вод.

Однако существуют 2 важных условия, при которых соединения азота, сульфаты, фосфаты и хлориды в воде свидетельствуют о фекальном загрязнении водоема.

Во-первых, всегда необходимо учитывать местные особенности воды. Так, присутствие в воде некоторых солей может быть обусловлено составом почвы. В глубоких межпластовых водах, которые имеют более высокую минерализацию, чем поверхностные, возможно повышенное содержание нитритов, что объясняется особенностями почвы и недостатком кислорода. При достаточном количестве кислорода нитриты крайне нестойки и обнаруживаются в воде лишь в виде следов.

Во-вторых, представленные показатели изменения солевого состава воды могут свидетельствовать о биогенном происхождении лишь в комплексе.

Одновременно для подтверждения фекального происхождения загрязнений необходимо определять биохимические показатели, косвенно свидетельствующие о присутствии в воде органических соединений. К таким показателям относится прежде всего окисляемость. Окисляемость - количество активного кислорода в миллиграммах, необходимое для окисления органических веществ в 1 л воды.

Чем больше в воде органических веществ, тем больше кислорода необходимо для их окисления. Вспомогательными показателями органического загрязнения воды являются также биохимическое потребление кислорода (БПК) и содержание кислорода в воде.

Наконец, для наиболее надежного подтверждения фекального загрязнения воды определяют микробиологические показатели: содержание колиформных бактерий, колифагов, цист лямблий, общее микробное число. В отдельных случаях воду исследуют на присутствие патогенных кишечных бактерий и энтеровирусов.

Все химические соединения, поступающие в организм человека из окружающей среды, в том числе и с водой, можно разделить на эссенциальные и неэссенциальные.

Эссенциальные вещества - это такие элементы, которые специфичны и незаменимы в некоторых биологических процессах, обязательных для выживания данного организма и последующих генераций.

Кроме того, к эссенциальным веществам относят и те неорганические элементы, которые дают эффект, благоприятный в отношении здоровья. К подобным факторам относятся многие химические соединения как органической, так и неорганической природы.

Неэссенциальные (антропогенные или техногенные) вещества - разнообразные токсичные соединения, присутствующие в земной коре или поступающие в окружающую среду в результате хозяйственной деятельности человека.

Механизм действия на организм природных эссенциальных факторов в отличие от воздействия токсичных соединений заключается в нелинейности зависимости биологического эффекта от количества поступающего вещества. Так, неэссенциальные вещества при увеличении дозы не оказывают вредного воздействия до определенного уровня, который называется порогом неблагоприятного действия. При превышении этого уровня проявляется прогрессирующий токсический эффект. Весь диапазон биологического действия можно разделить на зону безразличия и зону неблагоприятного действия. Эссенциальные факторы оказывают благоприятное действие в определенном промежутке доз (зона биотического действия). При недостатке и избытке поступления вещества отмечается неблагоприятное действие на организм (нижняя и верхняя зоны неблагоприятного действия).

В 1922-1923 гг. В.И. Вернадский показал невозможность жизнедеятельности животных и растительных организмов без биоэлементов.

Всего в организме человека и животных определено более 80 химических элементов, содержащихся в периодической таблице Д.И. Менделеева. Условно биоэлементы можно разделить на макро-, микро- и микромикроэлементы (ультрамикроэлементы).

Под макроэлементами обычно понимают химические вещества, которые содержатся в земной коре в больших количествах и поступают в организм человека в чистом виде или в соединениях в количестве нескольких граммов в сутки. Это углерод, кислород, водород, азот, кальций, магний, фосфор, сера, натрий, калий и др.

Некоторые элементы содержатся в различных средах земной коры в очень малых количествах и поступают в организм человека с водой, продуктами питания и воздухом также соответственно в малых дозах на уровне миллиграммов и микрограммов. К ним относятся железо, йод, фтор, медь, цинк, марганец, кобальт, молибден, селен, хром, никель, олово, кремний, ванадий и некоторые другие.

Ультрамикроэлементы обнаружены в организме в виде следов, и их роль выяснена не до конца. Это индий, теллур, ниобий, золото и др. (всего 16).

Академик А.П. Виноградов, творчески развивая идеи В.И. Вернадского, создал учение о биогеохимических провинциях. Согласно этому учению, на земном шаре имеются области с повышенным или пониженным содержанием того или иного элемента В организм они поступают различными путями: с продуктами, водой и воздухом. Макроэлементы поступают в организм человека в значительных количествах с водой, а для микроэлементов (кроме фтора) это не основной путь поступления. В результате избыточного либо недостаточного поступления биоэлемента в организм развиваются заболевания, которые носят название эндемических.

Наконец, можно выделить группу неэссенциальных токсичных соединений и веществ как природного, так и техногенного происхождения, которые при поступлении в организм в количествах, превышающих допустимый уровень, вызывают различные заболевания. Среди них важное значение имеют соли тяжелых металлов (свинец, ртуть, кадмий, таллий), мышьяк, бор, стронций, бериллий и др.

Общая минерализация определяет многие свойства воды. По этому признаку природные воды делятся на пресные, содержащие не более 1 г/л солей, минерализованные, в которых солей от 1 до 50 г/л, и рассолы, где минерализация превышает 50 г/л. В свою очередь, минерализованные воды можно разделить на солоноватые (количество минеральных веществ от 1 до 2,5 г/л) и соленые (количество солей более 2,5 г/л).

Засоленность почвы повышается от севера к югу. В организм человека с водой поступает солей до 20 г/сут, что приблизительно равняется норме поступления солей с пищей.

Гигиеническим нормативом сухого остатка в питьевой воде, т.е. ее минерализации, является 1000 мг/л. Длительное использование для питья высокоминерализованных вод приводит к ряду изменений в организме. Так, у населения, постоянно потребляющего солоноватые подземные воды, содержащие хлоридно-сульфатно-натриевые соли, отмечается снижение диуреза, задержка воды в тканях, отеки, нарушение водно-электролитного баланса и секреторной деятельности желудочно-кишечного тракта.

Наиболее выраженные патологические изменения в организме проявляются при употреблении для питьевых целей морской воды. Даже при кратковременном употреблении такой воды, имеющей повышенные концентрации хлоридов и сульфатов натрия, калия, кальция и магния, происходит прогрессирующее обезвоживание организма, нарушается кислотно-щелочное равновесие и повышается остаточный азот в крови, ухудшается сердечная деятельность. Все эти симптомы наблюдаются на фоне резкой жажды и утомляемости. В тяжелых случаях может наступить смерть.

Однако употребление излишне деминерализованной (мягкой), а тем более дистиллированной воды также неблагоприятно для организма. Такая вода имеет сниженные вкусовые свойства. Ее длительное использование для питья нарушает регуляцию водно-электролитного баланса, вызывает увеличение содержания электролитов в сыворотке крови и моче с их ускоренным выведением из организма, снижение осмотической резистентности эритроцитов, изменения в сердечнососудистой системе. По заключению ученых, вода с общей минерализацией ниже 100 мг/л не рекомендуется для питьевых целей.

Наряду с общей минерализацией большое значение имеет жесткость воды, определяемая в основном содержанием бикарбонатов, сульфатов и хлоридов кальция и магния. Вода с общей жесткостью свыше 7 ммоль/л имеет неблагоприятные гигиенические свойства. В эксперименте на животных вода с жесткостью 20 ммоль/л могла приводить к образованию камней в почках и мочевом пузыре. Мочекаменная болезнь сопровождается изменением минерального обмена в целом: нарушается содержание в крови кальция, магния, стронция, калия, йода, хлора, железа и др.

Развитию уролитиаза могут способствовать и другие внешние и внутренние факторы, например характер питания, поступление витаминов, в частности витамина А, наследственная предрасположенность, нарушение обмена веществ, застой мочи в почечных лоханках, функциональные перегрузки мочевой системы, воспаление и инфекция. Кроме того, прослеживается достоверная зависимость между повышенной жесткостью воды и сухим жарким климатом, с одной стороны, и увеличением частоты случаев мочекаменной болезни у населения - с другой. Это обстоятельство объясняется повышением основного обмена, ускорением выделения продуктов метаболизма, усилением потоотделения, обезвоживанием организма и гиперконцентрацией мочи.

В последние десятилетия во многих странах мира (Япония, Россия) изучают зависимость между жесткостью питьевой воды и развитием сердечно-сосудистых заболеваний у населения. По данным ВОЗ, сообщения из ряда стран свидетельствуют о существовании обратной статистической корреляции между жесткостью питьевой воды и уровнем смертности от заболеваний сердечно-сосудистой системы. В зонах, обеспечиваемых мягкой питьевой водой, почти повсеместно более широко распространены атеросклероз, дегенеративные поражения сердца, гипертоническая болезнь или сочетания перечисленных заболеваний, а также чаще отмечаются случаи внезапной смерти от поражения сердечно-сосудистой системы.

Для объяснения выявленных закономерностей ученые выдвигают две гипотезы. Согласно первой, какие-то компоненты жесткой воды оказывают защитное действие на сердечно-сосудистую систему. Такие свойства предполагаются в первую очередь у магния. Однако присутствие и других элементов, например лития, хрома, ванадия и кремния, тоже может играть защитную роль.

Вторая гипотеза предполагает, что некоторые вещества, присутствующие в мягкой воде, стимулируют развитие болезни. В соответствии с этой гипотезой сердечно-сосудистые заболевания провоцируют свинец и кадмий, которые могут вымываться из водопроводных труб.

В последние годы получила подтверждение концепция, согласно которой развитие гипертонической болезни в значительной мере обусловлено состоянием электролитного обмена, в частности обменом хлорида натрия, который усиливает вазопрессорное действие минералокортикоидов. Повышенное употребление хлорида натрия способствует угнетению желудочной секреции, уменьшению диуреза, задержке в организме натрия и усилению выведения калия. Сдвиги ряда биохимических критериев, а также повышение артериального давления и реактивности сосудов дают основание считать длительное употребление высокоминерализованной хлоридно-натриевой воды одним из факторов риска по гипертензивным состояниям. Повышается в основном систолическое артериальное давление.

Довольно часто в воде подземных источников встречаются нитриты и нитраты почвенного происхождения. Особенно это касается источников нецентрализованного водоснабжения, например шахтных колодцев. Нитриты более токсичны, чем нитраты, но в обычных условиях нитриты - очень нестойкие вещества. Окисляясь, они быстро переходят в нитраты. Нитриты и нитраты могут поступать в организм как с водой, так и с продуктами питания, в основном растительного происхождения, в которых они депонируются.

В организме нитраты под воздействием кишечной микрофлоры восстанавливаются до нитритов. Это превращение резко замедляется при высокой кислотности, свойственной желудочному соку. Нитриты в дальнейшем соединяются с поступающими с пищей аминами и амидами. В результате образуются нитрозамины с выраженными канцерогенными свойствами. Этот процесс активно протекает при нормальной кислотности в желудке. Нитрозамины оказывают также токсическое действие на печень, а некоторые из них обладают мутагенными и тератогенными свойствами.

Нитраты, соединяясь с гемоглобином, образуют стойкое соединение метгемоглобин. В результате блокирования гемоглобина резко снижается его способность к транспорту кислорода, наступает гипоксия тканей. Развивается заболевание, именуемое нитратной метгемоглобинемией. В норме в организме человека 1-2% гемоглобина находится в форме метгемоглобина. Если эта величина превышает 10%, наблюдаются клинические проявления гипоксии. 30-40% метгемоглобина в крови вызывают аноксию.

До недавнего времени метгемоглобинемию считали свойственной лишь детям грудного возраста, которые находятся на искусственном вскармливании молочными смесями, приготовленными на воде, богатой нитратами. Установлено, что у детей раннего возраста в отличие от взрослых имеется недостаточность специфических ферментов, участвующих в обратном превращении метгемоглобина. Нитратная метгемоглобинемия может развиваться у беременных, у больных язвенной болезнью желудка и злокачественными новообразованиями.

Одним из наиболее эффективных способов профилактики неблагоприятного действия нитритов и нитратов на человека является их гигиеническое регламентирование в воде. В связи с их совместным присутствием в воде нормирование осуществляется по следующей формуле:

где К - концентрации рассматриваемых соединений в воде; РВ - рекомендуемые величины.

Железо. В больших количествах железо содержится в подземных водах в виде растворимого бикарбоната закиси железа. Это соединение устойчиво только в отсутствие кислорода. В поверхностных водоемах, более богатых кислородом, двухвалентное железо переходит в нерастворимое трехвалентное с образованием бурых хлопьев гидрата окиси железа, которые постепенно оседают.

Вода с повышенным содержанием железа имеет неприятный «железистый» привкус и запах, желтоватый цвет. Ее нельзя использовать для стирки белья, так как она оставляет желтые «рисовые» пятна. Отложение нерастворимых соединений железа в водопроводных трубах сужает их просвет, что обусловлено развитием железобактерий.

Прямого как отрицательного, так и положительного биологического действия в указанных концентрациях природные соединения железа при поступлении с водой не оказывают, поскольку организмом они практически не усваиваются. Использование подземных вод с повышенным содержанием соединений двухвалентного железа возможно лишь после специальной обработки, которая заключается в обогащении воды кислородом (аэрация) с последующим отстаиванием.

Фтор. Из жизненно необходимых для человека микроэлементов лишь для фтора водный путь поступления является основным. Его соли хорошо растворимы и поэтому легко вымываются из почвы в воду. Концентрации повышаются в водоисточниках с севера на юг, а также по мере увеличения глубины залегания вод.

Содержание в воде более 1,5 мг/л фтора вызывает заболевание под названием флюороз, а менее 0,5 мг/л - способствует развитию кариеса. В I и II климатических районах допускается до 1,5 мг/л фторидов, в III климатическом районе - 1,2 мг/л. Это обусловлено различным потреблением питьевой воды в разных зонах: больше на юге, меньше в холодном и умеренном климатических районах. Предполагается, что общее среднее количество фтора, поступающего в организм человека с водой, приблизительно одинаково и составляет 3,5-4 мг/сут.

Флюороз. Предполагают, что фтор в период кальцинации костной системы откладывается в зубах в виде фторида кальция. Внешне флюороз проявляется темными пятнами на зубной эмали. Развитие флюороза возможно лишь в период формирования зубов, т.е. в детском возрасте, и происходит в течение 2-2,5 лет. При концентрациях фтора более 6 мг/л процесс захватывает не только зубную эмаль, но и дентин. Длительное поступление больших количеств фтора приводит к более обширным нарушениям. К ним относятся генерализованные изменения всего скелета: остеопороз, деформация и повышение хрупкости костей. Одновременно отмечаются нарушение фосфорнокальциевого обмена, снижение активности фосфатаз, холинэстеразы, угнетение кроветворной и центральной нервной систем у детей.

Профилактика флюороза заключается в организации водоснабжения из источников с меньшим содержанием фтора, а при отсутствии таковых - в дефторировании воды специальными методами. Некоторые ученые указывают на защитную роль витаминов С, А и D, ультрафиолетовых лучей, увеличение количества кальция.

Кариес. Содержание фтора в питьевой воде менее 0,5 мг/л снижает резистентность зубов к воздействию кислот и бактерий, способствует развитию кариеса.

С целью оптимального потребления фтора во многих странах мира проводится фторирование питьевой воды. В качестве профилактики рекомендуется также применение фторсодержащих зубных паст и эликсиров, потребление фторированных продуктов.

Кариес связан не только с поступлением фтора, но и с недостатком в воде ванадия, калия, натрия, молибдена, циркония и других элементов. В эксперименте установлено противокариесное действие марганца в умеренных дозах, тогда как высокие и низкие дозы этого металла снижают устойчивость к кариесу. Развитию кариеса способствуют повышенная кислотность в ротовой полости, микроорганизмы, плохой уход за зубами, наследственность, гормональные нарушения и другие факторы. Комплекс этих факторов следует учитывать при проведении профилактических мероприятий.

Йод. Недостаточное поступление йода в организм нарушает синтез гормона тироксина. Затем следует компенсаторное диффузное увеличение щитовидной железы в результате гиперфункции и развивается зобная болезнь. Однако длительное недостаточное поступление йода у детей может вызвать очень тяжелые заболевания вплоть до кретинизма. Это слабоумие, нарушение роста, физического и полового развития, пропорциональности тела с характерным внешним видом. У 70% таких больных развивается глухота.

Суточная потребность взрослого человека в йоде составляет 150- 200 мкг, 2/3 йода поступает в организм с растительной и животной пищей и лишь около 20 мкг - с водой, 10-15 мкг йода поступает с воздухом. Контроль за содержанием йода в окружающей среде осуществляется по его уровню в воде. Очаги эндемического зоба распространены по всей Земле, чаще встречаются в горных районах, где население пользуется маломинерализованной водой.

Иногда эндемический зоб встречается в местностях с относительно высоким содержанием йода в воде. Однако йод в этих районах представляет собой связанные с гуминовыми веществами неусвояемые формы. Такие особенности поведения йода в окружающей среде отмечаются при использовании воды с высокой цветностью и окисляемостью, чаще из шахтных колодцев. Это так называемая болотная вода.

Важная роль в профилактике эндемического зоба принадлежит йодированию поваренной соли, использованию привозных продуктов питания, а в особо сложных ситуациях - применению медицинских препаратов йода.

В последние годы установлено, что развитию эндемического зоба у населения способствует недостаточное поступление в организм марганца, кобальта, меди и избыток свинца, а также повышенное содержание в воздухе окиси углерода и других токсикантов.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]