Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЖЛФ.doc
Скачиваний:
218
Добавлен:
02.05.2015
Размер:
181.76 Кб
Скачать

9. Сравнительная характеристика методов получения воды.

Для каждого метода получения воды характерны свои положительные и отрицательные качества.

Методы очистки воды

Преимущества

Недостатки

Дистилляция

  • высокая степень очистки;

  • возможность получения горячей воды;

  • возможность обработки оборудования паром;

  • надежность.

  • высокая стоимость;

  • неэкономичность.

Обратный осмос

  • высокая степень очистки

  • возможность микробной конта-минации;

  • мембрану необходимо менять 2-4 раза в год;

  • вода холодная;

  • невозможность обработки оборудования паром;

  • необходимость обработки оборудования формальдегидом.

Ионный обмен

-высокая степень очистки

  • возможность микробной конта-минации;

  • частая регенерация;

  • небольшой срок использования ионообменных колонок;

  • невозможность обработки оборудования паром.

11. Аппаратура для получения воды очищенной. Аппарат «Грибок»

У этого аппарата испаритель, конденсатор и приемник расположены на одной оси, один под другим – благодаря такой конструкции аппарат занимает мало площади. Производительность «Грибка» до 450 литров воды в час. Такой аппарат удобен для небольших галеновых производств.

На фармацевтических заводах дистиллированную воду получают в колонных трехступенчатых перегонных аппаратах. Производительность их может достигать 1000 л/час. У этих аппаратов три испарителя расположены один над другим, вследствие чего они очень компактны. Другой особенностью колонных аппаратов является то, что только первый испаритель нагревается паром, поступающим из заводского паропровода. Что касается второго испарителя, то вода в нем нагревается паром, полученным в первом испарителе, а вода в третьем испарителе нагревается паром из второго испарителя. Таким образом, колонные аппараты являются экономичными, использующими теплоту вторичного пара.

Аппараты «Грибок» и трехступенчатый работают непрерывно с автоматическим восполнением воды. Поэтому в воде, находящейся в испарителе, постепенно повышается концентрация примесей, многие из которых выпадают в осадок, образуя накипь. В связи с этим через каждые 12-24 часа работы перегонного аппарата необходимо из испарителя полностью удалять кубовую воду и тщательно промывать его, стараясь удалить и накипь.

Помимо указанных дистилляционных установок фармацевтические заводы в настоящее время используют также мощные установки иностранных конструкций (например, супердистиллятор итальянской фирмы «Маскарини» производительностью 1500 л/час и др.).

11. Перспективы совершенствования производства жидких лекарственных форм в аптеках

Производственная деятельность аптек в последние годы переживает заметный спад. В немалой степени это связано с поступлением на отечественный фармацевтический рынок большого количества готовых лекарственных средств. Вместе с тем нацеленность индивидуальной рецептуры на конкретного больного, ценовая доступность и высокое доверие населения к лекарственным средствам аптечного изготовления свидетельствует о важности сохранения и усовершенствования аптечного производства.

Одним из основных факторов повышения эффективности аптечного производства, производительности труда и качества готовой продукции, а также снижения ее себестоимости, расходов сырья, материалов и электроэнергии является использование малогабаритного технологического оборудования (МТО).

Современные аспекты использования МТО в производственных аптеках включают три основных направления: традиционная механизация работ по выполнению отдельных операций и стадий технологического процесса, создание гибких технологических блоков и модулей, использование фармацевтических комплексов по мелкосерийному изготовлению лекарственных форм.

Современное МТО по своей конструкции многофункционально и позволяет выполнять несколько операций одновременно: получение и хранение воды очищенной и воды для инъекций, перекачивание, фильтрацию и дозирование жидкостей, дозирование жидкостей во флаконы и бутылки и обкатку их металлическими колпачками.

Современные устройства просты в разборке, обработке и использовании, имеют съемные взаимозаменяемые регулируемые узлы. Таким образом, одним из способов усовершенствования старого аптечного оборудования может стать составление блоков, состоящих из нескольких устройств, которые будут представлять собой завершенную технологическую цепочку.

Минздрав РФ в апреле 2002 года зарегистрировал и разрешил для применения в производственных отделах аптек новые разработки малогабаритного технологического оборудования.

Научно-производственной фирмой «Висма» (г. Уфа) созданы каскадные трех- и четырехступенчатые фильтры для очистки питьевой воды, используемые в установках типа МХС, а также для ультра- и микрофильтрации воды в различных технологических процессах производительностью от 200 до 10000 л/ч. Вода, получаемая из установки нанофильтрации, соответствует требованиям и нормам для применения в пищевой и медицинской промышленности.

Получение воды очищенной и воды для инъекций возможно на установке Научно-производственной фирмы АОЗТ «Мембранная техника и технология» марки УВИ-0,15, рекомендованной Минздравом РФ. Производительность установки составляет 130-150 л/ч. Для очистки используется мембранный метод.

ЗАО «Экопроект» (Москва) производит комплекс работ по проектированию, комплектации и монтажу установок для получения воды очищенной (деионизованной) производительностью до 20м3/ч. Установки получения деионизованной воды снабжены системой автоматического управления.

Установка для очистки и обессоливания воды серии «Шарья» НПП «Биотехпрогресс» (г. Кирши) предназначена для воды из различных природных источников. Принцип действия основан на применении современных методов: ультрафильтрации, обратного осмоса и ионообмена. Это сочетание обеспечивает удаление мелких примесей, коллоидов, микроорганизмов, органических молекул, деионизацию воды. Блочный принцип построения позволяет компоновать установки различного целевого назначения – от получения воды питьевого качества до сверхчистой воды. Производительность установок – 0,1-10 м3/ч. Установки серии «Шарья» отличаются компактностью, низкой энергоемкостью.

Литература:

  1. Технология лекарственных форм / Под. ред. Л.А. Кондратьевой. - М., 1991. – Т.1. – С.157-174.

  2. ГФ Х1, Т.2., 1990.

  3. ГФ Х1, 1969. – С.857.

  4. Приказы МЗ РФ №305 от 16.10.97, №308 от 21.10.97., №214 от 16.07.97.