
- •Краткий курс сопротивления материалов
- •Часть 1 Глава 1. Введение
- •1.1. Задачи и методы сопротивления материалов
- •1.2. Реальный объект и расчётная схема
- •1.2.1. Модели материала
- •1.3. Классификация сил (модели нагружения)
- •1.4. Напряжения
- •1.5. Общие принципы расчёта на прочность
- •Глава 2. Центральное растяжение – сжатие прямого бруса
- •2.1. Усилия и напряжения в поперечном сечении бруса
- •2.2. Условие прочности
- •2.3. Деформации. Закон Гука
- •2.4. Расчёт стержня с учетом собственного веса
- •2.5. Статически неопределимые системы
- •2.5.1. Расчёт на действие нагрузки
- •2.5.2. Температурные напряжения
- •2.5.3. Монтажные напряжения
- •2.6. Механические характеристики материалов
- •2.6.1. Испытание на растяжение малоуглеродистой (мягкой) стали
- •Характеристики прочности
- •Характеристики пластичности
- •Разгрузка и повторное нагружение
- •Диаграммы напряжений
- •2.6.2. Испытание на сжатие различных материалов
- •2.6.3. Определение твёрдости
- •2.6.4. Сравнение свойств различных материалов
- •2.7. Допускаемые напряжения
- •2.8. Потенциальная энергия упругой деформации
- •Глава 3. Напряжённое и деформированное
- •3.1. Компоненты напряжений. Виды напряжённых состояний
- •3.2. Линейное напряжённое состояние
- •3.3. Плоское напряжённое состояние
- •3.3.1. Прямая задача
- •3.3.2. Обратная задача
- •3.4. Объёмное напряжённое состояние. Общие понятия
- •3.5.Деформации при объёмном напряжённом состоянии.
- •3.5.1. Обобщённый закон Гука
- •3.5.2. Относительная объёмная деформация
- •3.6. Потенциальная энергия упругой деформации
- •3.7. Теории прочности
- •3.7.1. Задачи теорий прочности
- •3.7.2. Классические теории прочности
- •3.7.3. Понятие о новых теориях прочности
- •Глава 4. Геометрические характеристики плоских сечений
- •4.1. Статические моменты.
- •4.2. Моменты инерции
- •4.3. Зависимость между моментами инерции при параллельном переносе осей
- •4.4. Зависимость между моментами инерции при повороте осей
- •4.5. Главные оси и главные моменты инерции
- •Глава 5. Плоский изгиб прямого бруса
- •5.1. Конструкция опор. Определение реакций. Внутренние усилия
- •5.2. Дифференциальные и интегральные зависимости между q, q и m
- •5.3. Построение эпюр поперечной силы q и изгибающего момента m
- •5.4. Нормальные напряжения при чистом изгибе
- •5.5. Условие прочности по нормальным напряжениям. Рациональные формы сечений
- •5.6. Касательные напряжения при поперечном изгибе
- •5.7. Распределение касательных напряжений в балках
- •5.8. Напряжённое состояние при поперечном изгибе.
- •5.9. Касательные напряжения в полках тонкостенных профилей. Центр изгиба
- •Нормальные напряжения:
- •5.10. Потенциальная энергия упругой деформации
- •Глава 6. Сдвиг
- •6.2. Проверка прочности и допускаемые напряжения при чистом сдвиге
- •6.3. Расчёт заклёпочных и сварных соединений
- •Глава 7. Кручение прямого бруса
- •7.1. Основные понятия. Определение крутящих моментов
- •7.2. Напряжения и деформации при кручении стержней круглого и кольцевого сечений
- •7.3. Расчёт валов на прочность и жёсткость
- •7.4. Разрушение валов из различных материалов. Потенциальная энергия упругой деформации
- •7.5. Кручение стержней прямоугольного сечения
- •7.6. Расчёт цилиндрических винтовых пружин с малым шагом
- •Оглавление
2.2. Условие прочности
Для решения вопроса о прочности, в соответствии с принятым методом расчёта на прочность по допускаемым напряжениям и условием прочности (1.4), запишем это условие применительно к растянутому (сжатому) стержню.
, (2.3)
где |Nmax| – максимальная по абсолютному значению продольная сила;
F – площадь поперечного сечения стержня;
[σ] – допускаемое напряжение.
При решении задач сопротивления материалов [σ] всегда задано. При расчётах машин или конструкций Нормы расчёта дают указания по поводу назначения или расчёта [σ]. Формула (2.3) применима для стержня из материала, имеющего одинаковую прочность на растяжение и на сжатие (например, для стали). Но если материал по-разному сопротивляется растяжению и сжатию (например, чугун) для расчёта на прочность необходимо учитывать знак продольной силы и записывать два условия прочности
,
, (2.4)
где Nmax – наибольшая (растягивающая) продольная сила;
Nmin – наименьшая (сжимающая) продольная сила;
[σ+] и [σ-] – допускаемые напряжения на растяжение и на сжатие соответственно.
Значение N, входящее в условие прочности, определяется предварительно по эпюреN(рис.2.3.) или из расчёта статического равновесия конструкции.
Рассмотрим пример. Необходимо определить размеры поперечного сечения стержней кронштейна, удерживающего нагрузку P= 100 кН (рис.2.6).
Стержень №1: стальной, круглый, [σ] = 160 МПа; стержень №2: деревянный, квадратный, [σ] = 12 МПа.
Рис.2.6
Сначала найдём усилия в стержнях. Для такой системы можно записать два уравнения статики:
∑ х = 0: – N2 – N1cos α = 0,
∑ y = 0: – P + N1sin α = 0.
.
Из
уравнения ∑ y
= 0 найдём
.
Из уравнения ∑ х = 0 найдём N2 = – N1cos α = – 166,7 ∙ 0,8 = – 133,3 кН.
Из
условия прочности
найдём площади поперечного сечения
стержней
,
.
При расчётах прочности величину допускаемого напряжения, заданную в МПа, перевели в кН/см2: 160 МПа = 16 кН/см2 и 12 МПа = 1,2 кН/см2. Теперь осталось определить размеры поперечных сечений.
|
|
2.3. Деформации. Закон Гука
Рассмотрим деформации, возникающие при растяжении и сжатии стержней. При растяжении длина стержня увеличивается, а поперечные размеры сокращаются. При сжатии, наоборот, длина стержня уменьшается, а поперечные размеры увеличиваются. На рис.2.7 пунктиром показан деформированный вид растянутого стержня.
Рис.2.7
ℓ – длина стержня до приложения нагрузки;
ℓ1 – длина стержня после приложения нагрузки;
b – поперечный размер до приложения нагрузки;
b1 – поперечный размер после приложения нагрузки.
Абсолютная продольная деформация ∆ℓ = ℓ1 – ℓ.
Абсолютная поперечная деформация ∆b = b1 – b.
Значение относительной линейной деформации ε можно определить как отношение абсолютного удлинения ∆ℓ к первоначальной длине бруса ℓ
. (2.5)
Аналогично находятся поперечные деформации
. (2.6)
При растяжении поперечные размеры уменьшаются: ε > 0, ε′ < 0; при сжатии: ε < 0, ε′ > 0. Опыт показывает, что при упругих деформациях поперечная всегда прямо пропорциональна продольной.
ε′ = – νε. (2.7)
Коэффициент пропорциональности ν называется коэффициентом Пуассона или коэффициентом поперечной деформации. Он представляет собой абсолютную величину отношения поперечной деформации к продольной при осевом растяжении
. (2.8)
Назван по имени французского учёного, впервые предложившего его в начале XIX века. Коэффициент Пуассона есть величина постоянная для материала в пределах упругих деформаций (т.е. деформаций, исчезающих после снятия нагрузки). Для различных материалов коэффициент Пуассона изменяется в пределах 0 ≤ ν ≤ 0,5: для стали ν = 0,28…0,32; для резины ν = 0,5; для пробки ν = 0.
Между напряжениями и упругими деформациями существует зависимость, известная под названием закон Гука:
σ = Еε. (2.9)
Коэффициент пропорциональности Е между напряжением и деформацией называется модулем нормальной упругости или модулем Юнга. Размерность Е такая же, как и у напряжения. Так же, как и ν, Е – упругая постоянная материала. Чем больше значение Е, тем меньше, при прочих равных условиях, продольная деформация. Для стали Е = (2...2,2)105 МПа или Е = (2...2,2)104 кН/см2.
Подставляя в формулу (2.9) значение σ по формуле (2.2) и ε по формуле (2.5) , получим выражение для абсолютной деформации
. (2.10)
Произведение EF называется жёсткостью бруса при растяжении и сжатии.
Формулы (2.9) и (2.10) – это разные формы записи закона Гука, предложенного в середине XVII века. Современная форма записи этого фундаментального закона физики появилась гораздо позже – в начале XIX века.
Формула (2.10) справедлива лишь в пределах тех участков, где сила N и жёсткость EF постоянны. Для ступенчатого стержня и стержня, нагруженного несколькими силами, удлинения подсчитываются по участкам с постоянными N и F и результаты суммируются алгебраически
. (2.11)
Если эти величины изменяются по непрерывному закону, ∆ℓ вычисляется по формуле
. (2.12)
В ряде случаев для обеспечения нормальной работы машин и сооружений размеры их деталей должны быть выбраны так, чтобы кроме условия прочности обеспечивалось условие жёсткости
, (2.13)
где ∆ℓ – изменение размеров детали;
[∆ℓ] – допускаемая величина этого изменения.
Подчёркиваем, что расчет на жёсткость всегда дополняет расчёт на прочность.