
- •Дипломная работа
- •1 Обзор литературы
- •1.1 Классификация и назначения ферросплавов
- •1.2 Основные способы получения ферросплавов. Общие требования к их качеству
- •1.3 Алюминотермическое восстановление оксидов металлов. Характеристики алюминотермического процесса.
- •1.4 Некоторые аспекты проведения металлотермии
- •1.5 Самораспространяющийся высокотемпературный синтез как способ получения чистых металлов
- •1.6 Вольфрам, свойства вольфрама и его соединений, области применения
- •2 Экспериментальная часть
1.2 Основные способы получения ферросплавов. Общие требования к их качеству
Соответствующее качество ферросплавов можно охарактеризовать следующими параметрами: содержанием и пределами колебаний ведущего элемента, концентрацией регламентируемых сопутствующих примесей (C, S, P, цветные металлы), температурой плавления, плотностью, состоянием поверхности кусков слитка, гранулометрическим составом, содержанием неметаллических включений, водорода, кислорода и др. Химический состав ферросплавов является основным показателем их качества, главным образом, содержание в нем ведущего элемента. Ферросплавная промышленность выпускает в основном сплавы с высокой концентрацией ведущего элемента для того, чтобы соответствовать требованиям изготовителей стали, заинтересованных в наиболее малой массе легирующей присадки. При объединении в одну партию отдельных плавок необходимо учитывать содержание легирующего элемента в ферросплаве. Характеристикой однородности химического состава ферросплавов является максимальное допустимое отклонение от среднего содержания ведущего элемента в партии. В основном для большинства ферросплавов отклонение устанавливается равным ± 2 %, которое обеспечивает получать стали с узкими пределами содержания легирующих элементов [4].
На сегодняшний день известны следующие способы получения металлов и их сплавов: доменный, электротермический, металлотермический и самораспространяющийся высокотемпературный синтез (СВС), который считается частным случаем металлотермии.
Восстановление металлов оксидом углерода, коксом лежит в основе получения сплавов доменным процессом. Одновременно с чистым металлом образуются соединения металла с углеродом и некоторыми другими элементами (кремний, сера и фосфор), в результате чего понижается температура плавления сплавов. Достоинство данного метода: возможность получения сплавов в больших количествах; недостатки: большая зауглероженность получаемых сплавов, большое количество примесей и образование вредных загрязнений, отрицательно влияющих на экологию [5].
Электросиликотермический способ заключается в получении металлов из оксидов посредством их восстановления ферросилицием с добавлением извести. При добавлении извести (СаО) увеличивается выход и связывание примесей, понижается температура плавления. Процесс плавки ведут в дуговых печах. Достоинства данного метода: управляемость, относительная чистота продуктов, отсутствие экологических загрязнений; недостаток -высокая энергоемкость процесса [5].
В результате процесса восстановления металлов из оксидов алюминием или другими металлами получают различные металлы и сплавы - это металлотермический способ. Различают внепечную и электропечную плавку ферросплавов. Регулированием температуры можно добиться наибольшего выхода продукции - это электропечный способ. Внепечный процесс возникает только в том случае, если при протекании реакции металлотермического восстановления, количество выделяющего тепла является достаточным для самопроизвольного течения процесса и не требует подвода извне. В нем используют порошкообразные металлы, обеспечивающие высокие скорости протекания реакций восстановления, что является его отличительной особенностью [6].
В роли металлов-восстановителей применяются следующие металлы: алюминий, магний, кальций и затем РЗМ. Название металлотермических процессов происходит от названий используемых в них металлов-восстановителей, например, алюминотермический и т.п.
В основе всех металлотермических процессов лежат две стадии:
-стационарный медленный процесс, который создает условия для развития основной реакции (индукционный период);
-нестационарный автоускоряющийся процесс, заканчивающийся воспламенением основной реакционной смеси [6].
Известны следующие основные требования металлотермического способа [7]:
Измельчение компонентов шихты должно быть совершенно одинаковым;
Компоненты шихты должны быть тщательно перемешаны;
Наличие запала шихтовой смеси.
Полученные металлы посредством металлотермии практически не содержат углерода, что является основным преимуществом данного способа. Но для металлотермического способа, в частности алюминотермического, получения ферросплавов необходимы шихтовые материалы с минимальным содержанием в своем составе вредных примесей, поэтому используют либо концентраты, либо чистые руды.
В настоящее время при проведении алюминотермических процессов для выплавки ферросплавов наиболее широко используют электропечные методы. Например, такими методами стали получать 75 % всех алюминотермических сплавов. Также наблюдается уменьшение доли внепечной плавки до 5-10 % [6,7].
Алюминотермия представляет собой восстановление алюминием металлов из оксидов или других соединений с добавлением таких соединений, как оксид кальция и оксид кремния для увеличения выхода металла и уменьшения содержания алюминия в сплаве [8].
Алюминотермический процесс имеет следующие достоинства [9]:
поскольку алюминий обладает высоким химическим сродством к кислороду, то характерно восстановление оксидов металлов, имеющих высокую прочность при извлечении их из шихты;
восстановление оксидов;
получение сплавов и технически чистых металлов с низкой концентрацией углерода и примесей;
небольшие капитальные затраты;
простота аппаратурного оформления процесса;
ведение процесса в горне с выпуском металла;
интенсификация процесса и уменьшение расхода алюминия посредством предварительного расплавления оксидов и флюсов в электропечи;
возможность введения в шихту значительного количества металлических отходов сплавов и металлов (металлотермический переплав).
Недостатки алюминотермического процесса:
высокая стоимость;
дефицитность первичного алюминия;
вероятность образования низших оксидов ведущих металлов;
возможность уменьшения термодинамической вероятности в ходе процесса восстановления оксидов и извлечения металлов из шихты;
возможность образования высокоглиноземистого шлака с высокой вязкостью, которая вызывает потери восстановленного металла (в виде корольков).
Эти недостатки ограничивают возможность применения алюминотермического процесса для получения ферросилиция, ферромарганца и многих сортов феррохрома. Кроме того, отличительная особенность алюминотермии состоит в образовании в результате реакций тугоплавкого глиноземистого шлака [10].