
- •В.Н. Игумнов Основы высокотемпературной криоэлектроники
- •Условные обозначения
- •Список сокращений
- •Предисловие
- •Введение
- •Контрольные вопросы
- •Литература
- •Глава 1 сверхпроводимость
- •1.1. Нулевое сопротивление
- •Критические температуры некоторых сверхпроводников
- •1.2. Сверхпроводник в магнитном поле
- •Значения напряженности критического поля
- •1.3. Сверхпроводники второго рода. Вихри Абрикосова
- •Сверхпроводники второго рода
- •1.4. Энергетическая щель. Одночастичное туннелирование
- •Величина щели для различных сверхпроводников
- •1.5. Эффекты Джозефсона
- •Параметры слабосвязанных сверхпроводниковых структур, изготовленных методами интегральной технологии
- •1.6. Теория Бардина-Купера-Шриффера. Основные результаты
- •1.7. Особенности высокотемпературной сверхпроводимости
- •Контрольные вопросы
- •Глава 2 высокотемпературные сверхпроводники
- •2.1. Структура высокотемпературных сверхпроводников
- •Основные свойства некоторых втсп
- •Контрольные вопросы
- •2.2. Синтез втсп материалов
- •Размеры частиц порошков, полученных разными методами
- •Контрольные вопросы
- •2.3. Технология объемных сверхпроводников
- •2.3.1. Методы жидкофазного полученияBi-2212 сверхпроводников
- •Основные параметры расплавных методов и характеристики Bi-2212 [10]
- •2.3.2. Методы жидкофазного получения y-123 сверхпроводников
- •Основные параметры раслоенных методов и характеристики y-123
- •Контрольные вопросы
- •2.4. Технология пленочных сверхпроводников
- •2.4.1. Физические методы получения тонких пленок
- •2.4.2. Химические методы получения пленок и покрытий
- •2.4.3. Подложки. Буферные слои
- •Удельное сопротивление и тСпленокY-123
- •Контрольные вопросы
- •2.5. Основные свойства сверхпроводников
- •2.5.1. Переход металл-изолятор
- •2.5.2. Терморезистивные характеристики
- •2.5.3. Критический ток
- •2.5.4. Высокотемпературные сверхпроводники в магнитном поле
- •Результаты резистивных измерений в различных сверхпроводниках [5]
- •Контрольные вопросы
- •Глава 3 устройства криоэлектроники
- •3.1. Пассивные сверхвысокочастотные устройства
- •3.1.1. Микрополосковые линии. Линии задержки
- •Зависимость ширины микрополоска от длины линии
- •Линии задержки
- •3.1.2. Фильтры
- •Полосовые фильтры
- •3.1.3. Резонаторы
- •3.1.4. Приборы наS–Nпереходах
- •Контрольные вопросы
- •3.2. Болометры
- •Контрольные вопросы
- •3.3. Устройства на основе переходов Джозефсона
- •3.3.1. Джозефсоновские криотроны
- •3.3.2. Цифровые устройства на д-криотронах
- •3.3.3. Квантроны
- •3.3.4. Приемные устройства
- •3.3.5. Генераторы
- •Контрольные вопросы
- •3.4. Устройства на основе квантовых интерферометров
- •3.4.1. Сверхпроводящий квантовый интерферометр
- •3.4.2. Цифровые устройства на основе сквиДов
- •3.4.3. Магнитометры и градиентометры
- •3.4.4. Магнитометрические системы
- •Основные параметры ссм
- •Контрольные вопросы
- •3.5. Магнитные экраны
- •Контрольные вопросы
- •Глава 4 лабораторный практикум
- •4.1. Синтез втсп материалов
- •Общие сведения
- •Задания
- •Контрольные вопросы
- •Литература
- •4.2. Получение и исследование тонкопленочных втсп элементов
- •Общие сведения
- •Характеристики распылительных систем
- •Задания
- •Контрольные вопросы
- •Литература
- •4.3. Получение и исследование колец-фрагментов магнитного экрана
- •Задания
- •Контрольные вопросы
- •Литература
- •4.4. Исследование свойств колец-фрагментов магнитного экрана
- •Общие сведения
- •Задания
- •Контрольные вопросы
- •Литература
- •4.5. Изготовление и исследование свойств магнитных экранов
- •Общие сведения
- •Задания
- •Контрольные вопросы
- •Литература
- •Заключение
- •Библиографический список
- •Предметный указатель
- •Оглавление
- •Глава 1 14
- •Глава 2 41
- •Глава 3 88
- •Глава 4 135
Критические температуры некоторых сверхпроводников
Материал |
ТС, К |
Материал |
ТС, К |
ниобий |
9,22 |
рений |
1,7 |
свинец |
7,22 |
рутений |
0,5 |
бериллий |
0,026 |
таллий |
4,39 |
висмут |
6,00 |
вольфрам |
0,012 |
ртуть |
4,15 |
цинк |
0,9 |
олово |
3,73 |
Nb3Ge |
23,4 |
Сегодня известен ряд чистых металлов (более 20) и несколько сотен сплавов и химических соединений, обладающих сверхпроводимостью. Температура перехода в сверхпроводящее состояние (или критическая температура) этих материалов изменяется в пределах от 0,01 до 20 К (табл. 1.1). Некоторые материалы переходят в сверхпроводящее состояние в особых условиях: под давлением (например цезий: 1,5 К; 0,11 Мбар); в виде тонких пленок (например кремний). Диэлектрики не переходят в сверхпроводящее состояние так же, как и ферромагнитные материалы. Более того, малейшее загрязнение сверхпроводниковых материалов атомами Fe,Co,Niи др. может полностью подавить сверхпроводимость. Не обнаружена сверхпроводимость у элементов 1 группы (кроме цезия), золота, серебра, меди и др. Необходимо отметить, что эти материалы обладают высокой электропроводностью. Все эти факты нашли свое объяснение в теории БКШ.
Забегая вперед, приведем главные понятия из теории сверхпроводимости, которые позволят при знакомстве с проявлениями сверхпроводимости лучше понять их природу.
В сверхпроводнике электроны образуют куперовские пары– пары электронов, связанные друг с другом посредством кристаллической решетки. Спины электронов пары антипараллельны, импульсы противоположны, энергия близка к энергии Ферми, и расстояние между ними порядка 10-6м в низкотемпературных сверхпроводниках. Электроны, объединяясь в пары, приобретают нулевой суммарный спин и из фермионов превращаются в бозоны. Бозоны имеют другие свойства, в частности, собираются на одном низшем энергетическом уровне образуютсверхпроводящий конденсат. Сверхпроводящий конденсат ведет себя как единое целое и движется по кристаллу без рассеяния. Это движение аналогично сверхтекучести гелия. Все пары обладают корреляцией движения. Длины волн и фазы волновых функций пар равны. С ростом температуры число пар убывает и при критической температуре становится равным нулю. Образование куперовских пар приТ<ТСявляется энергетически выгодным. ПриТ<ТСпары не могут рассеиваться в кристалле, поскольку там нет фононов достаточной энергии для разрыва пары.
Для практического использования желательно иметь сверхпроводники с возможно большей критической температурой. В этом случае создание и обслуживание криоэлектронных устройств существенно упрощается и удешевляется. Естественно, что поиск таких материалов является очень актуальной задачей. Однако, до 1986 г. самой высокой температурой перехода обладал сверхпроводник Nb3Ge(см. табл. 1.1).
Поскольку речь идет об отсутствии сопротивления в сверхпроводниках при Т<ТС, очевидно существование сверхпроводящего тока плотностиjSв отсутствие внешнего электрического поля.
jS=e nS VS, (1.1)
где e– заряд электрона;
nS– концентрация сверхпроводящих электронов;
VS– скорость сверхпроводящих электронов.
Существование такого тока было экспериментально обнаружено в сверхпроводниковом кольце, где переменным магнитным полем индуцировали ток, затем поле выключили. Проведенные оценки параметров показывают, что удельное сопротивление металла в сверхпроводящем состоянии не более чем 1*10-23Ом*см, т.е. оно в 1017раз меньше, чем удельное сопротивление меди при комнатной температуре. Время, требуемое для затухания такого тока может быть определено из выражения:
, (1.2)
где L– индуктивность кольца;
R– его сопротивление;
t– время;
I0– начальный ток.
Расчеты показывают, что такое время – не менее 100000 лет.
Однако, если ток в сверхпроводнике увеличивать, то при условии I≥IСсверхпроводимость нарушится и образец перейдет в нормальное состояние, хотя сохраняется условиеТ<ТС. ТокIСназывают критическим, и он определяется с учетом плотности критического токаjSи площади поперечного сечения образцаS:
, (1.3)
где с– скорость света;
λ– глубина проникновения магнитного поля;
HС– критическое магнитное поле.
Этот эффект (эффект Силсби) приводит к ограничению транспортного тока через сверхпроводник и существованию второго критического параметра сверхпроводника jS. Эффект Силсби связан с появлением магнитного поля вокруг тока и существованием величины критической индукции магнитного поля для данного сверхпроводника (см. п. 1.2).