
- •В.Н. Игумнов Основы высокотемпературной криоэлектроники
- •Условные обозначения
- •Список сокращений
- •Предисловие
- •Введение
- •Контрольные вопросы
- •Литература
- •Глава 1 сверхпроводимость
- •1.1. Нулевое сопротивление
- •Критические температуры некоторых сверхпроводников
- •1.2. Сверхпроводник в магнитном поле
- •Значения напряженности критического поля
- •1.3. Сверхпроводники второго рода. Вихри Абрикосова
- •Сверхпроводники второго рода
- •1.4. Энергетическая щель. Одночастичное туннелирование
- •Величина щели для различных сверхпроводников
- •1.5. Эффекты Джозефсона
- •Параметры слабосвязанных сверхпроводниковых структур, изготовленных методами интегральной технологии
- •1.6. Теория Бардина-Купера-Шриффера. Основные результаты
- •1.7. Особенности высокотемпературной сверхпроводимости
- •Контрольные вопросы
- •Глава 2 высокотемпературные сверхпроводники
- •2.1. Структура высокотемпературных сверхпроводников
- •Основные свойства некоторых втсп
- •Контрольные вопросы
- •2.2. Синтез втсп материалов
- •Размеры частиц порошков, полученных разными методами
- •Контрольные вопросы
- •2.3. Технология объемных сверхпроводников
- •2.3.1. Методы жидкофазного полученияBi-2212 сверхпроводников
- •Основные параметры расплавных методов и характеристики Bi-2212 [10]
- •2.3.2. Методы жидкофазного получения y-123 сверхпроводников
- •Основные параметры раслоенных методов и характеристики y-123
- •Контрольные вопросы
- •2.4. Технология пленочных сверхпроводников
- •2.4.1. Физические методы получения тонких пленок
- •2.4.2. Химические методы получения пленок и покрытий
- •2.4.3. Подложки. Буферные слои
- •Удельное сопротивление и тСпленокY-123
- •Контрольные вопросы
- •2.5. Основные свойства сверхпроводников
- •2.5.1. Переход металл-изолятор
- •2.5.2. Терморезистивные характеристики
- •2.5.3. Критический ток
- •2.5.4. Высокотемпературные сверхпроводники в магнитном поле
- •Результаты резистивных измерений в различных сверхпроводниках [5]
- •Контрольные вопросы
- •Глава 3 устройства криоэлектроники
- •3.1. Пассивные сверхвысокочастотные устройства
- •3.1.1. Микрополосковые линии. Линии задержки
- •Зависимость ширины микрополоска от длины линии
- •Линии задержки
- •3.1.2. Фильтры
- •Полосовые фильтры
- •3.1.3. Резонаторы
- •3.1.4. Приборы наS–Nпереходах
- •Контрольные вопросы
- •3.2. Болометры
- •Контрольные вопросы
- •3.3. Устройства на основе переходов Джозефсона
- •3.3.1. Джозефсоновские криотроны
- •3.3.2. Цифровые устройства на д-криотронах
- •3.3.3. Квантроны
- •3.3.4. Приемные устройства
- •3.3.5. Генераторы
- •Контрольные вопросы
- •3.4. Устройства на основе квантовых интерферометров
- •3.4.1. Сверхпроводящий квантовый интерферометр
- •3.4.2. Цифровые устройства на основе сквиДов
- •3.4.3. Магнитометры и градиентометры
- •3.4.4. Магнитометрические системы
- •Основные параметры ссм
- •Контрольные вопросы
- •3.5. Магнитные экраны
- •Контрольные вопросы
- •Глава 4 лабораторный практикум
- •4.1. Синтез втсп материалов
- •Общие сведения
- •Задания
- •Контрольные вопросы
- •Литература
- •4.2. Получение и исследование тонкопленочных втсп элементов
- •Общие сведения
- •Характеристики распылительных систем
- •Задания
- •Контрольные вопросы
- •Литература
- •4.3. Получение и исследование колец-фрагментов магнитного экрана
- •Задания
- •Контрольные вопросы
- •Литература
- •4.4. Исследование свойств колец-фрагментов магнитного экрана
- •Общие сведения
- •Задания
- •Контрольные вопросы
- •Литература
- •4.5. Изготовление и исследование свойств магнитных экранов
- •Общие сведения
- •Задания
- •Контрольные вопросы
- •Литература
- •Заключение
- •Библиографический список
- •Предметный указатель
- •Оглавление
- •Глава 1 14
- •Глава 2 41
- •Глава 3 88
- •Глава 4 135
3.4.3. Магнитометры и градиентометры
Практически в любой отрасли науки и техники используются магнитные измерения: ведутся исследования магнитных полей микрочастиц и планет, растений животных, головного мозга и сердца человека. Для определения величины и структуры магнитных полей используются магнитометры и магнитные градиентометры. Криоэлектроника в этой области оказывается вне конкуренции.
Собственно ПТ СКВИД(как и ВЧ СКВИД) является простейшим измерителем магнитного потока (см. п. 3.4.1). Однако на практике применяются более сложные системы обработки сигнала со СКВИДа. Как правило, измеряемая физическая величина преобразуется в ток, который затем подается на входную катушку, индуктивно связанную с контуром СКВИДа и наводящую в нем магнитный поток. Разрешение по энергии в единичной полосе частот может быть определено из выражения
, (3.45)
где К=М2/Lk·L– коэффициент связи входной катушки с контуром СКВИДа;
М– взаимная индуктивность катушки и СКВИДа;
Lk– индуктивность катушки.
Для максимальной передачи энергии из входной катушки в СКВИД, необходимо стремиться к повышению коэффициента связи (К→1). Важным параметром является коэффициент преобразования
. (3.46)
Оценку порядка величины γnможно провести с учетом выражения для глубины модуляции ΔU.
, (3.47)
где Rg=RНи можно записать выражение
. (3.48)
С учетом (3.33) для ВЧ СКВИДа оценка
дает величину
, (3.49)
где К0– коэффициент связи СКВИДа с колебательным контуром;
f– частота накачки.
В связи с достижениями технологии изготовления ПТ СКВИДов, последние получили большое распространение в магнитометрах в силу более простого решения проблемы согласования с усилителем. Использование трансформатора магнитного потока позволяет существенно повысить предельную чувствительность по полю. Трансформатор потока представляет собой сверхпроводящий контур, состоящий из двух катушек (рис. 3.32, а).
а) б)
Рис. 3.22. Входной преобразователь магнитометра (а), градиентометра (б)
Приемная катушка содержит Nnвитков, и ее индуктивностьLn, а входная катушка имеет индуктивностьLkи взаимную индуктивность со СКВИДом –М. Магнитное поле, в которое помещена приемная катушка, наводит сверхпроводящий ток в трансформаторе потока, который в свою очередь создает магнитный поток в СКВИДе, пропорциональный входному сигналу. Таким образом, можно получить большую чувствительность к магнитному полю, увеличив площадь приемной катушки. Наименьшее разрешимое измерение магнитного поля в расчете на единичную ширину полосы можно быть определено из выражения:
, (3.50)
где Sф– спектральная плотность шумового потока;
Аn– площадь витка приемной катушки.
Применение трансформатора потокапозволяет повысить предельную чувствительность СКВИДов с 10-6А/м до 10-11А/м. Основными факторами, ограничивающими чувствительность СКВИДов, являются шумы различного происхождения.
Сверхпроводниковые градиентометрыизмеряют приращения градиентов различных составляющих магнитного поля в зависимости от расположения входного преобразователя такого градиентометра в пространстве и его схемы. В отличие от магнитометра, входной преобразователь градиентометра содержит не одну, а две или более составляющих контура (рис. 3.22, в), разнесенных на базовое расстояниеb.
При появлении градиента напряженности
магнитного поля
,
перпендикулярного плоскости контура
входного преобразователя, в контуре
возникает затухающий ток:
, (3.51)
где L– индуктивность контура;
S– площадь контура.
Если в пределах площади элементов контура поле Ноднородно и линейно нарастает вдольb, то выражение (3.51) можно преобразовать.
Ir=S(H1-H2)/L. (3.52)
Ток Irможет быть измерен гальванометром, который представляет собой СП-магнитометр на базе СКВИДа. Чтобы этот магнитометр не реагировал на внешнее поле и фиксировал только поле катушки, его располагают внутри магнитного экрана.
Если измеряемое поле (градиент поля) является малым, сигнал магнитометра обрабатывают, усиливают или градиентометр становится частью магнитометрической системы. Примеры таких систем мы рассмотрим ниже.