
- •Министерство образования российской федерации
- •Содержание
- •1.2. Основные категории статистики
- •Глава 2. Сводка и группировка статистических данных
- •2.1. Задачи сводки и ее содержание
- •2.2. Метод группировок и его место в системе статистических методов
- •2.3. Виды статистических группировок
- •2.4. Принципы построения статистических группировок
- •2.5. Сравнимость статистических группировок. Вторичная группировка
- •2.6. Статистическая таблица и ее элементы
- •2.7. Виды таблиц по характеру подлежащего
- •2.8. Виды таблиц по разработке сказуемого
- •2.9. Правила построения статистических таблиц
- •2.10. Чтение и анализ статистической таблицы
- •Глава 3. Теория статистических показателей
- •3.1. Абсолютные показатели
- •3.2. Относительные показатели
- •3.3. Средние показатели
- •3.4. Структурные средние
- •Глава 4. Показатели вариации в анализе социально-экономических явлений и процессов
- •4.1. Основные показатели вариации
- •4.2 Показатели вариации в анализе взаимосвязей
- •Глава 5. Статистическое изучение взаимосвязи социально-экономических явлений
- •5.1. Причинность, регрессия, корреляция
- •5.2. Парная регрессия
- •5.3. Множественная (многофакторная) регрессия
- •5.4. Параметрические методы изучения связи
- •5.5. Принятие решений на основе уравнений регрессии
- •5.6. Методы изучения связи качественных признаков
- •5.7. Ранговые коэффициенты связи
- •Глава 6. Индексный метод анализа
- •6.1. Общие понятия об индексах
- •6.2. Средние формы сводных индексов
- •6.3. Сводные индексы в анализе последовательных временных периодов
- •6.4. Индексный анализ влияния структурных изменений
- •Раздел II. Моделирование бизнес-процессов Глава 7. Априорный анализ компонент временного ряда
- •7.1. Понятие и основные принципы экономико-статистического анализа
- •7.2. Характеристика и принципы формирования информационной базы
- •7.3. Априорный анализ и его роль в статистическом моделировании
- •Глава 8. Теоретические аспекты моделирования и прогнозирования бизнес-процессов
- •8.1. Система статистических понятий и категорий, применяемых в моделировании и прогнозировании бизнес-процессов
- •8.2. Модель как отображение действительности
- •8.3. Сущность и классификация статистических прогнозов
- •8.4. Этапы построения статистических прогнозов
- •Глава 9. Методологические аспекты оценки скорости и интенсивности изменения бизнес-процессов
- •9.1. Понятие о рядах динамики и их виды
- •9.2. Сопоставимость уровней и смыкание рядов динамики
- •9.3. Аналитические показатели ряда динамики
- •9.4. Средние показатели рядов динамики
- •Глава 10. Моделирование основных тенденций и закономерностей бизнес-процессов
- •10.1. Особенности статистического анализа одномерных временных рядов по компонентам
- •10.2. Методы выявления тенденции временного ряда
- •10.4. Модели тенденции бизнес-процессов
- •10.5. Выбор формы тренда
- •Глава 11. Моделирование фактора случайности в бизнес-процессах
- •Глава 12. Моделирование периодической компоненты бизнес-процессов
- •Методы выявления сезонной компоненты
- •Модели сезонных колебаний
- •Глава 13. Моделирование связных временных рядов
- •13.1. Проблема автокорреляции в анализе бизнес-процессов
- •Для проверки автокорреляции в уровнях ряда также используется и критерий Дарбина-Уотсона. Гипотеза о наличии автокорреляции проверяется с помощью случайной величины:
- •13.2. Модели авторегрессионных преобразований
- •Раздел III. Прогнозирование тенденций в бизнес-процессах
- •Глава 14. Прогнозирование на основе одномерных временных рядов
- •14.1. Простейшие методы прогнозирования
- •14.2. Прогнозирование на основе экстраполяции тренда
- •Прогнозирование с учетом дисконтирования информации
- •14.4. Прогнозирование на основе кривых роста
- •14.5. Прогнозирование рядов динамики, не имеющих тенденции
- •Глава 15. Прогнозирование многомерных временных рядов
- •Глава 16. Оценка точности и надежности прогнозов
14.5. Прогнозирование рядов динамики, не имеющих тенденции
При решении конкретных прикладных задач анализа социально-экономических явлений исследователь сталкивается с временными рядами социально-экономических показателей, в которых отсутствует тенденция развития, то есть изменение значений уровней исходного ряда динамики носит стационарный характер.
Однако временные ряды не имеющие тенденции, на практике, встречаются крайне редко.
В этой связи, прежде чем приступать к прогнозированию, необходимо всеми известными методами убедиться в том, что тенденция в исследуемом временном ряду действительно отсутствует. Только после того, как установлено отсутствие тенденции и гипотезы о наличии тенденции отвергнуты всеми методами, следует использовать те методы прогнозирования, которые дают возможность установить развитие явления при отсутствии тенденции.
Особенность прогнозирования данных временных рядов заключается в том, что использование методов статистического прогнозирования, основанных на получении точечной или интервальной количественной вероятностной характеристики изучаемого явления в будущем с относительно высокой степенью достоверности, невозможно.
В этом случае для прогнозирования таких рядов применяются вероятностные статистические методы прогнозного оценивания.
Вероятностные методы оценивания не позволяют дать точечную количественную характеристику прогнозируемого явления. Они дают возможность лишь оценить вероятность того, что значение прогнозируемого явления на каждый следующий (с отдалением) период упреждения будет больше или меньше значения последнего уровня исходного временного ряда. Вероятностные методы прогнозирования дают менее точные прогнозные оценки и обладают большей степенью неопределенности.
На практике, в анализе временных рядов социально-экономических явлений, не имеющих тенденции, наибольшее распространение среди вероятностных методов прогнозирования, получил метод, в основе которого лежит использование закона распределения Пуассона (распределение редких явлений) с плотностью
r= е-х. (14.47)
Особенность метода заключается в том, что всегда прогнозируется благоприятная тенденция.
Этапы реализации данного метода следующие:
Осуществляется последовательное сравнение каждого следующего значения уровня исходного временного ряда со значением предыдущего уровня. При этом знаком «+» отмечается возрастание значения уровня, а «-» - убывание. Если последующий уровень больше предыдущего, то ставится знак «+», меньше предыдущего – «-». Причем первый уровень всегда отмечается знаком «-». Знак «+» показывает, сколько периодов времени исследуемое явление возрастает и этот временный период принято считать благоприятной тенденцией.
Строится специальная таблица, характеризующая виды тенденции, длину благоприятной тенденции (t) и частоту повторения благоприятной тенденции (f):
-
Виды тенденций
Длина благоприятной тенденции, t
Частота, f
- -
- + -
- + + -
- + + + -
…
0
1
2
3
…
При этом две первые графы таблицы: вид тенденции и длина благоприятной тенденции существуют априори и исследователь только частотой определяет наличие того или иного вида тенденции в исследуемом временном ряду.
Длина же благоприятной тенденции (t) определяется числом плюсов между двумя минусами в ряду динамики «+» и «-».
На основе данных таблицы определяется средняя длина благоприятной тенденции по формуле вида:
, (14.48)
где t- длина благоприятной тенденции;
f- частота повторения благоприятной тенденции.
Средняя длина благоприятной тенденции показывает, сколько в среднем в рассматриваемом временном ряду, наблюдалось совершение благоприятной тенденции.
На основе полученной средней длины
благоприятной тенденции
определяется показатель, характеризующий
интенсивность прерываний этой
благоприятной тенденции (
),
который определяется по формуле:
(14.49)
Данный показатель характеризует сколько в среднем раз за рассматриваемый период времени совершалось прерывание благоприятной тенденции.
Вероятность благоприятной тенденции определяется на основе следующей модификации закона распределения Пуассона:
,
(14.50)
где р - вероятность совершения благоприятной тенденции;
- интенсивность прерываний благоприятной
тенденции;
L- период упреждения (число лет сохранения благоприятной
тенденции).