
- •Министерство образования российской федерации
- •Содержание
- •1.2. Основные категории статистики
- •Глава 2. Сводка и группировка статистических данных
- •2.1. Задачи сводки и ее содержание
- •2.2. Метод группировок и его место в системе статистических методов
- •2.3. Виды статистических группировок
- •2.4. Принципы построения статистических группировок
- •2.5. Сравнимость статистических группировок. Вторичная группировка
- •2.6. Статистическая таблица и ее элементы
- •2.7. Виды таблиц по характеру подлежащего
- •2.8. Виды таблиц по разработке сказуемого
- •2.9. Правила построения статистических таблиц
- •2.10. Чтение и анализ статистической таблицы
- •Глава 3. Теория статистических показателей
- •3.1. Абсолютные показатели
- •3.2. Относительные показатели
- •3.3. Средние показатели
- •3.4. Структурные средние
- •Глава 4. Показатели вариации в анализе социально-экономических явлений и процессов
- •4.1. Основные показатели вариации
- •4.2 Показатели вариации в анализе взаимосвязей
- •Глава 5. Статистическое изучение взаимосвязи социально-экономических явлений
- •5.1. Причинность, регрессия, корреляция
- •5.2. Парная регрессия
- •5.3. Множественная (многофакторная) регрессия
- •5.4. Параметрические методы изучения связи
- •5.5. Принятие решений на основе уравнений регрессии
- •5.6. Методы изучения связи качественных признаков
- •5.7. Ранговые коэффициенты связи
- •Глава 6. Индексный метод анализа
- •6.1. Общие понятия об индексах
- •6.2. Средние формы сводных индексов
- •6.3. Сводные индексы в анализе последовательных временных периодов
- •6.4. Индексный анализ влияния структурных изменений
- •Раздел II. Моделирование бизнес-процессов Глава 7. Априорный анализ компонент временного ряда
- •7.1. Понятие и основные принципы экономико-статистического анализа
- •7.2. Характеристика и принципы формирования информационной базы
- •7.3. Априорный анализ и его роль в статистическом моделировании
- •Глава 8. Теоретические аспекты моделирования и прогнозирования бизнес-процессов
- •8.1. Система статистических понятий и категорий, применяемых в моделировании и прогнозировании бизнес-процессов
- •8.2. Модель как отображение действительности
- •8.3. Сущность и классификация статистических прогнозов
- •8.4. Этапы построения статистических прогнозов
- •Глава 9. Методологические аспекты оценки скорости и интенсивности изменения бизнес-процессов
- •9.1. Понятие о рядах динамики и их виды
- •9.2. Сопоставимость уровней и смыкание рядов динамики
- •9.3. Аналитические показатели ряда динамики
- •9.4. Средние показатели рядов динамики
- •Глава 10. Моделирование основных тенденций и закономерностей бизнес-процессов
- •10.1. Особенности статистического анализа одномерных временных рядов по компонентам
- •10.2. Методы выявления тенденции временного ряда
- •10.4. Модели тенденции бизнес-процессов
- •10.5. Выбор формы тренда
- •Глава 11. Моделирование фактора случайности в бизнес-процессах
- •Глава 12. Моделирование периодической компоненты бизнес-процессов
- •Методы выявления сезонной компоненты
- •Модели сезонных колебаний
- •Глава 13. Моделирование связных временных рядов
- •13.1. Проблема автокорреляции в анализе бизнес-процессов
- •Для проверки автокорреляции в уровнях ряда также используется и критерий Дарбина-Уотсона. Гипотеза о наличии автокорреляции проверяется с помощью случайной величины:
- •13.2. Модели авторегрессионных преобразований
- •Раздел III. Прогнозирование тенденций в бизнес-процессах
- •Глава 14. Прогнозирование на основе одномерных временных рядов
- •14.1. Простейшие методы прогнозирования
- •14.2. Прогнозирование на основе экстраполяции тренда
- •Прогнозирование с учетом дисконтирования информации
- •14.4. Прогнозирование на основе кривых роста
- •14.5. Прогнозирование рядов динамики, не имеющих тенденции
- •Глава 15. Прогнозирование многомерных временных рядов
- •Глава 16. Оценка точности и надежности прогнозов
14.4. Прогнозирование на основе кривых роста
Прогнозирование социально-экономических явлений на основе кривых роста (кривых насыщения) стало применяться сравнительно недавно. Впервые эти методы были использованы в начале ХХ века для прогнозирования роста биологических популяций. Однако кривые роста хорошо себя зарекомендовали и при прогнозировании социально-экономических явлений. Однако их применение в этом случае требует соблюдения определенных условий.
Исходный временной ряд должен быть очень длинным (30-40 лет).
Исходный временной ряд не должен иметь скачков, и тенденция такого ряда должна описываться достаточно плавной кривой.
Использование кривых роста в прогнозировании социально-экономических явлений может давать достаточно хорошие результаты, если предел насыщения будет определен сравнительно точно.
Следует отметить, что кривые роста отражают кумулятивные возрастания к определенному заранее максимальному пределу.
Особенностью кривых роста является то, что абсолютные приращения уменьшаются по мере приближения к пределу. Однако процесс роста идет до конца.
Значение кривых роста как методов статистического прогнозирования социально-экономических явлений состоит в том, что они способствуют эмпирически правильному воспроизводству тенденции развития исследуемого явления.
Наиболее распространенными кривыми роста, используемыми в статистической практике прогнозирования, являются кривая Гомперца и кривая Перля-Рида.
Обе кривые, в общем, похожи одна на другую и графически изображаются S-образной кривой:
Особенностью уравнений этих кривых является то, что их параметры могут быть определены методом наименьших квадратов лишь приближенно. Поэтому для расчета этих кривых используется ряд искусственных методов, основанных на разбиении исходного ряда динамики на отдельные группы.
Например, для того чтобы осуществить прогноз на основе кривой Гомперца (она названа так в честь английского статистика и математика, впервые применившего эту кривую для прогнозирования в страховании), необходимо выполнить следующее:
кривая описывается уравнением
y=a ´ bcx; (14.40)
прологарифмировав уравнение, получаем
lg y = lg a + (lg b) ´ cx, (14.41)
где lga– логарифм максимального значения, к которому
приближается прогнозный уровень явления;
lgb– расстояние, которое отделяет в каждый данный
момент значение уровня от его максимального
значения;
с – имеет значение от нуля до единицы;
х – начало на шкале х, то есть время, год, к которому
относится первое значение уровня (t= 0, 1, 2, … ,n);
затем весь ряд динамики разбивается на три части:
длины ряда; (14.42)
для каждой выделенной группы рассчитываются суммы S1,S2,
S3;
затем рассчитываются первые разности по этим суммам:
d1 = S2 – S1; d2 = S3 – S2; (14.43)
на основании этих расчетов получим параметры уравнения с, lga,
lgb, которые рассчитываются следующим образом:
,
где n– число уровней ряда в каждой части;
, (14.44)
Чтобы использовать данную кривую для экстраполяции за пределы исходного ряда динамики, достаточно подставить соответствующее значение xt в уравнение кривой.
Наряду с кривой Гомперца достаточно широкое распространение получила также кривая Перля-Рида, которая в социально-экономической статистике впервые была использована для демографических расчетов американским учеными – биологом Р. Перлем и математиком Л. Ридом.
Эта кривая выражает модифицированную геометрическую прогрессию, в которой возрастание затухает по мере приближения к некоторому определенному пределу. Максимальный предел устанавливается, прежде всего, на основании конкретного изучения исследуемого социально-экономического явления.
Так же как и кривая Гомперца, кривая Перля-Рида использует тот же искусственный прием для определения параметров кривой. Однако следует отметить, что по сравнению с кривой Гомперца прогнозные данные, полученные по этой кривой, имеют некоторую неопределенность.
Кривая Перля-Рида описывается уравнением:
(14.45)
Параметры уравнения находятся следующим образом:
;
;
(14.46)
Из приведенных расчетов видно, что
параметры уравнения кривой Перля-Рида
определяются так же, как и параметры
кривой Гомперца, за исключением того,
что в последнем случае не используется
прием логарифмирования. Кроме того,
нужно иметь в виду, что в зависимости
от масштаба данных величина
умножается на 10000, 100000 или 1000000.