
- •Министерство образования российской федерации
- •Содержание
- •1.2. Основные категории статистики
- •Глава 2. Сводка и группировка статистических данных
- •2.1. Задачи сводки и ее содержание
- •2.2. Метод группировок и его место в системе статистических методов
- •2.3. Виды статистических группировок
- •2.4. Принципы построения статистических группировок
- •2.5. Сравнимость статистических группировок. Вторичная группировка
- •2.6. Статистическая таблица и ее элементы
- •2.7. Виды таблиц по характеру подлежащего
- •2.8. Виды таблиц по разработке сказуемого
- •2.9. Правила построения статистических таблиц
- •2.10. Чтение и анализ статистической таблицы
- •Глава 3. Теория статистических показателей
- •3.1. Абсолютные показатели
- •3.2. Относительные показатели
- •3.3. Средние показатели
- •3.4. Структурные средние
- •Глава 4. Показатели вариации в анализе социально-экономических явлений и процессов
- •4.1. Основные показатели вариации
- •4.2 Показатели вариации в анализе взаимосвязей
- •Глава 5. Статистическое изучение взаимосвязи социально-экономических явлений
- •5.1. Причинность, регрессия, корреляция
- •5.2. Парная регрессия
- •5.3. Множественная (многофакторная) регрессия
- •5.4. Параметрические методы изучения связи
- •5.5. Принятие решений на основе уравнений регрессии
- •5.6. Методы изучения связи качественных признаков
- •5.7. Ранговые коэффициенты связи
- •Глава 6. Индексный метод анализа
- •6.1. Общие понятия об индексах
- •6.2. Средние формы сводных индексов
- •6.3. Сводные индексы в анализе последовательных временных периодов
- •6.4. Индексный анализ влияния структурных изменений
- •Раздел II. Моделирование бизнес-процессов Глава 7. Априорный анализ компонент временного ряда
- •7.1. Понятие и основные принципы экономико-статистического анализа
- •7.2. Характеристика и принципы формирования информационной базы
- •7.3. Априорный анализ и его роль в статистическом моделировании
- •Глава 8. Теоретические аспекты моделирования и прогнозирования бизнес-процессов
- •8.1. Система статистических понятий и категорий, применяемых в моделировании и прогнозировании бизнес-процессов
- •8.2. Модель как отображение действительности
- •8.3. Сущность и классификация статистических прогнозов
- •8.4. Этапы построения статистических прогнозов
- •Глава 9. Методологические аспекты оценки скорости и интенсивности изменения бизнес-процессов
- •9.1. Понятие о рядах динамики и их виды
- •9.2. Сопоставимость уровней и смыкание рядов динамики
- •9.3. Аналитические показатели ряда динамики
- •9.4. Средние показатели рядов динамики
- •Глава 10. Моделирование основных тенденций и закономерностей бизнес-процессов
- •10.1. Особенности статистического анализа одномерных временных рядов по компонентам
- •10.2. Методы выявления тенденции временного ряда
- •10.4. Модели тенденции бизнес-процессов
- •10.5. Выбор формы тренда
- •Глава 11. Моделирование фактора случайности в бизнес-процессах
- •Глава 12. Моделирование периодической компоненты бизнес-процессов
- •Методы выявления сезонной компоненты
- •Модели сезонных колебаний
- •Глава 13. Моделирование связных временных рядов
- •13.1. Проблема автокорреляции в анализе бизнес-процессов
- •Для проверки автокорреляции в уровнях ряда также используется и критерий Дарбина-Уотсона. Гипотеза о наличии автокорреляции проверяется с помощью случайной величины:
- •13.2. Модели авторегрессионных преобразований
- •Раздел III. Прогнозирование тенденций в бизнес-процессах
- •Глава 14. Прогнозирование на основе одномерных временных рядов
- •14.1. Простейшие методы прогнозирования
- •14.2. Прогнозирование на основе экстраполяции тренда
- •Прогнозирование с учетом дисконтирования информации
- •14.4. Прогнозирование на основе кривых роста
- •14.5. Прогнозирование рядов динамики, не имеющих тенденции
- •Глава 15. Прогнозирование многомерных временных рядов
- •Глава 16. Оценка точности и надежности прогнозов
14.2. Прогнозирование на основе экстраполяции тренда
Наиболее распространенным методом прогнозирования выступает аналитическое выражение тренда. При этом, для выхода за границы исследуемого периода достаточно продолжить значения независимой переменной времени.
При таком подходе к прогнозированию предполагается, что размер уровня, характеризующего явление, формируется под воздействием множества факторов, причем не представляется возможным выделить порознь их влияние. В связи с этим ход развития связывается не с какими-либо конкретными факторами, а с течением времени, то есть:
y=f(t). (14.14)
Экстраполяция дает возможность получить точечное значение прогноза. Точечный прогноз есть оценка прогнозируемого показателя в точке (в конкретном году, месяце, дне) по уравнению, описывающему тенденцию показателя.
Точечная оценка рассчитывается путем подстановки номера года t, на который рассчитывается прогноз, в уравнении тренда. Она является средней оценкой для прогнозируемого интервала времени.
Совпадение фактических данных и прогностических оценок – явление маловероятное, поэтому целесообразно определить доверительные интервалы прогноза.
Величина доверительного интервала определяется следующим образом:
,
(14.15)
где
- средняя квадратическая ошибка тренда;
- расчетное значение уровня;
- доверительное значение критерия
Стьюдента.
Метод прогнозирования на основе экстраполяции тренда базируется на следующих предпосылках:
исходный временной ряд должен описываться плавной кривой;
общие условия, определяющие тенденцию развития изучаемого явления в прошлом и настоящем не должны претерпевать значительных изменений в будущем;
исходный ряд динамики должен иметь достаточное число уровней, с тем, чтобы отчетливо проявилась тенденция.
Трендовые модели выражаются различными
функциями
,
на основе которых строятся модели
прогноза и осуществляется их оценка.
На практике наибольшее распространение получили следующие виды трендовых моделей:
линейная
;
параболы различных степеней:
2-го порядка
;
3-го порядка (кубическая)
и т.д.
степенная:
показательная:
(14.16)
логарифмическая:
.
При этом наиболее существенным вопросом прогнозирования по трендовым моделям является проблема точного прогноза.
Точная оценка прогноза весьма условна в силу следующих причин:
Выбранная для прогнозирования функция дает лишь приближенную оценку тенденции, так как она не является единственно возможной.
Статистическое прогнозирование осуществляется на основе ограниченного объема информации, что, в свою очередь, сказывается на величине доверительных интервалов прогноза.
Наличие в исходном временном ряду случайного компонента приводит к тому, что любой прогноз осуществляется лишь с определенной долей вероятности.
Рассматривая получение интервальных или точечных оценок прогноза следует учитывать, что в отдельных случаях получение более точных оценок не гарантирует надежности прогноза.
Применение трендовых моделей прогнозирования социально-экономических явлений имеют большую значимость и, несмотря на определенную простоту их реализации, часто применяются для прогнозирования сложных социально-экономических явлений.
Если выбранная модель тренда достаточно правильно отражает тенденцию развития, то полученные на ее основе прогнозы практически всегда надежны.
Прогнозирование методом экстраполяции тренда основывается на анализе тенденций развития одномерных временных рядов социально-экономических явлений и процессов.
Однако прогноз по аналитическому выражению тренда имеет один существенный недостаток, который иногда приводит к большим ошибкам при прогнозировании явления.
Дело заключается в том, что в данном случае прогнозируется только детерминированная составляющая ряда динамики и не учитывается случайный компонент. Чтобы избежать этой ошибки и сделать прогноз более точным, надо отыскать закономерность изменения во времени случайного компонента. Для этого принято вначале находить отклонения от тренда и определять закономерность их изменения во времени, а затем делать прогноз случайной составляющей динамического ряда. Результаты обоих прогнозов объединяются. Рассматриваемый метод тогда дает удовлетворительные результаты, когда в эмпирическом ряду случайные колебания будут небольшими и между ними отсутствует автокорреляция.