
- •Министерство образования российской федерации
- •Содержание
- •1.2. Основные категории статистики
- •Глава 2. Сводка и группировка статистических данных
- •2.1. Задачи сводки и ее содержание
- •2.2. Метод группировок и его место в системе статистических методов
- •2.3. Виды статистических группировок
- •2.4. Принципы построения статистических группировок
- •2.5. Сравнимость статистических группировок. Вторичная группировка
- •2.6. Статистическая таблица и ее элементы
- •2.7. Виды таблиц по характеру подлежащего
- •2.8. Виды таблиц по разработке сказуемого
- •2.9. Правила построения статистических таблиц
- •2.10. Чтение и анализ статистической таблицы
- •Глава 3. Теория статистических показателей
- •3.1. Абсолютные показатели
- •3.2. Относительные показатели
- •3.3. Средние показатели
- •3.4. Структурные средние
- •Глава 4. Показатели вариации в анализе социально-экономических явлений и процессов
- •4.1. Основные показатели вариации
- •4.2 Показатели вариации в анализе взаимосвязей
- •Глава 5. Статистическое изучение взаимосвязи социально-экономических явлений
- •5.1. Причинность, регрессия, корреляция
- •5.2. Парная регрессия
- •5.3. Множественная (многофакторная) регрессия
- •5.4. Параметрические методы изучения связи
- •5.5. Принятие решений на основе уравнений регрессии
- •5.6. Методы изучения связи качественных признаков
- •5.7. Ранговые коэффициенты связи
- •Глава 6. Индексный метод анализа
- •6.1. Общие понятия об индексах
- •6.2. Средние формы сводных индексов
- •6.3. Сводные индексы в анализе последовательных временных периодов
- •6.4. Индексный анализ влияния структурных изменений
- •Раздел II. Моделирование бизнес-процессов Глава 7. Априорный анализ компонент временного ряда
- •7.1. Понятие и основные принципы экономико-статистического анализа
- •7.2. Характеристика и принципы формирования информационной базы
- •7.3. Априорный анализ и его роль в статистическом моделировании
- •Глава 8. Теоретические аспекты моделирования и прогнозирования бизнес-процессов
- •8.1. Система статистических понятий и категорий, применяемых в моделировании и прогнозировании бизнес-процессов
- •8.2. Модель как отображение действительности
- •8.3. Сущность и классификация статистических прогнозов
- •8.4. Этапы построения статистических прогнозов
- •Глава 9. Методологические аспекты оценки скорости и интенсивности изменения бизнес-процессов
- •9.1. Понятие о рядах динамики и их виды
- •9.2. Сопоставимость уровней и смыкание рядов динамики
- •9.3. Аналитические показатели ряда динамики
- •9.4. Средние показатели рядов динамики
- •Глава 10. Моделирование основных тенденций и закономерностей бизнес-процессов
- •10.1. Особенности статистического анализа одномерных временных рядов по компонентам
- •10.2. Методы выявления тенденции временного ряда
- •10.4. Модели тенденции бизнес-процессов
- •10.5. Выбор формы тренда
- •Глава 11. Моделирование фактора случайности в бизнес-процессах
- •Глава 12. Моделирование периодической компоненты бизнес-процессов
- •Методы выявления сезонной компоненты
- •Модели сезонных колебаний
- •Глава 13. Моделирование связных временных рядов
- •13.1. Проблема автокорреляции в анализе бизнес-процессов
- •Для проверки автокорреляции в уровнях ряда также используется и критерий Дарбина-Уотсона. Гипотеза о наличии автокорреляции проверяется с помощью случайной величины:
- •13.2. Модели авторегрессионных преобразований
- •Раздел III. Прогнозирование тенденций в бизнес-процессах
- •Глава 14. Прогнозирование на основе одномерных временных рядов
- •14.1. Простейшие методы прогнозирования
- •14.2. Прогнозирование на основе экстраполяции тренда
- •Прогнозирование с учетом дисконтирования информации
- •14.4. Прогнозирование на основе кривых роста
- •14.5. Прогнозирование рядов динамики, не имеющих тенденции
- •Глава 15. Прогнозирование многомерных временных рядов
- •Глава 16. Оценка точности и надежности прогнозов
Глава 12. Моделирование периодической компоненты бизнес-процессов
Методы выявления сезонной компоненты
При рассмотрении квартальных или месячных данных многих социально-экономических явлений часто обнаруживаются определенные, постоянно повторяющиеся колебания, которые существенно не изменяются за длительный период времени. Они являются результатом влияния природно-климатических условий, общих экономических факторов, а также ряда многочисленных разнообразных факторов, которые частично являются регулируемыми. В статистике периодические колебания, которые имеют определенный и постоянный период, равный годовому промежутку, носят название «сезонных колебаний» или «сезонных волн», а динамический ряд в этом случае называют тренд-сезонным, или просто сезонным рядом динамики.
Сезонные колебания характеризуются специальным показателями, которые называются индексами сезонности (Is). Совокупность этих показателей отражает сезонную волну. Индексами сезонности являются процентные отношения фактических внутригодовых уровней к постоянной или переменной средней.
Для выявления сезонных колебаний обычно берут данные за несколько лет, распределенные по месяцам. Данные за несколько лет (обычно не менее трех) берутся для того, чтобы выявить устойчивую сезонную волну, на которой не отражались бы случайные условия одного года.
Если ряд динамики не содержит ярко выраженной тенденции в развитии, то индексы сезонности вычисляются непосредственно по эмпирическим данным без их предварительного выравнивания.
Для каждого месяца рассчитывается
средняя величина уровня, например, за
три года (),
затем из них рассчитывается среднемесячный
уровень для всего ряда (
)
и в заключение определяется процентное
отношение средних для каждого месяца
к общему среднемесячному уровню ряда,
то есть:
(12.1)
Рассчитанные индексы сезонности характеризуют сезонную волну продажи молока во внутригодовой динамике, где пики продаж приводятся на февраль и июль месяцы.
Если же ряд динамики содержит определенную тенденцию в развитии, то прежде чем вычислить сезонную волну, фактические данные должны быть обработаны так, чтобы была выявлена общая тенденция. Обычно для этого прибегают к аналитическому выравниванию ряда динамики.
При использовании способа аналитического выравнивания ход вычислений индексов сезонности следующий:
- по соответствующему полиному вычисляются для каждого месяца (квартала) выравненные уровни на момент времени (t);
- вычисляются отношения фактических
месячных (квартальных) данных (yi)
к соответствующим выравненным данным
(t)
в процентах
;
- находятся средние арифметические из процентных отношений, рассчитанных по одноименным периодам в процентах Ii=(I1+I2+I3+…+In):n, где n – число одноименных периодов.
В общем виде формулу расчета индекса сезонности данным способом можно записать так:
(12.2)
Выявление сезонной составляющей также может быть произведено на основе следующих методов.
Метод абсолютных разностей:
Для каждого месяца определяется средняя за 5 лет
:
- определяется среднемесячный уровень для пятилетки:
звенья сезонной волны абсолютных разностей =
:
II.
Метод отношений помесячных средних
()
к средней за весь период:
,
- индекс сезонности
где
- средняя для каждого месяца
-
общий среднемесячный уровень за весь
период.
Метод отношений помесячных уровней к средней месячной данного года:
для каждого месяца рассчитывается средняя величина показателя за каждый год:
определяется отношение каждого помесячного фактического уровня к этим средним:
определяется сумма по месяцам за 5 лет:
Метод относительных величин:
определяются цепные темпы роста:
определяется средняя для каждого месяца:
расчет скорректированных средних ( на основе перехода от цепных индексов к базисным):
- скорректированные средние с учетом поправки:
сопоставить скорректированные средние со 109,5 (средняя).
Метод относительных величин на основе медианы:
определяются цепные темпы роста помесячно (см.ранее);
цепные
ранжируются по возрастанию (помесячно);
определяется Ме :
скорректированные медианы:
;
размер поправки
;
скорректированные
с учетом поправки:
сопоставить скорректированное значение
со средней.
Можно построить модель сезонной волны и численно определить размах сезонных колебаний, характер их проявления в различных отраслях народного хозяйства.