
- •Министерство образования российской федерации
- •Содержание
- •1.2. Основные категории статистики
- •Глава 2. Сводка и группировка статистических данных
- •2.1. Задачи сводки и ее содержание
- •2.2. Метод группировок и его место в системе статистических методов
- •2.3. Виды статистических группировок
- •2.4. Принципы построения статистических группировок
- •2.5. Сравнимость статистических группировок. Вторичная группировка
- •2.6. Статистическая таблица и ее элементы
- •2.7. Виды таблиц по характеру подлежащего
- •2.8. Виды таблиц по разработке сказуемого
- •2.9. Правила построения статистических таблиц
- •2.10. Чтение и анализ статистической таблицы
- •Глава 3. Теория статистических показателей
- •3.1. Абсолютные показатели
- •3.2. Относительные показатели
- •3.3. Средние показатели
- •3.4. Структурные средние
- •Глава 4. Показатели вариации в анализе социально-экономических явлений и процессов
- •4.1. Основные показатели вариации
- •4.2 Показатели вариации в анализе взаимосвязей
- •Глава 5. Статистическое изучение взаимосвязи социально-экономических явлений
- •5.1. Причинность, регрессия, корреляция
- •5.2. Парная регрессия
- •5.3. Множественная (многофакторная) регрессия
- •5.4. Параметрические методы изучения связи
- •5.5. Принятие решений на основе уравнений регрессии
- •5.6. Методы изучения связи качественных признаков
- •5.7. Ранговые коэффициенты связи
- •Глава 6. Индексный метод анализа
- •6.1. Общие понятия об индексах
- •6.2. Средние формы сводных индексов
- •6.3. Сводные индексы в анализе последовательных временных периодов
- •6.4. Индексный анализ влияния структурных изменений
- •Раздел II. Моделирование бизнес-процессов Глава 7. Априорный анализ компонент временного ряда
- •7.1. Понятие и основные принципы экономико-статистического анализа
- •7.2. Характеристика и принципы формирования информационной базы
- •7.3. Априорный анализ и его роль в статистическом моделировании
- •Глава 8. Теоретические аспекты моделирования и прогнозирования бизнес-процессов
- •8.1. Система статистических понятий и категорий, применяемых в моделировании и прогнозировании бизнес-процессов
- •8.2. Модель как отображение действительности
- •8.3. Сущность и классификация статистических прогнозов
- •8.4. Этапы построения статистических прогнозов
- •Глава 9. Методологические аспекты оценки скорости и интенсивности изменения бизнес-процессов
- •9.1. Понятие о рядах динамики и их виды
- •9.2. Сопоставимость уровней и смыкание рядов динамики
- •9.3. Аналитические показатели ряда динамики
- •9.4. Средние показатели рядов динамики
- •Глава 10. Моделирование основных тенденций и закономерностей бизнес-процессов
- •10.1. Особенности статистического анализа одномерных временных рядов по компонентам
- •10.2. Методы выявления тенденции временного ряда
- •10.4. Модели тенденции бизнес-процессов
- •10.5. Выбор формы тренда
- •Глава 11. Моделирование фактора случайности в бизнес-процессах
- •Глава 12. Моделирование периодической компоненты бизнес-процессов
- •Методы выявления сезонной компоненты
- •Модели сезонных колебаний
- •Глава 13. Моделирование связных временных рядов
- •13.1. Проблема автокорреляции в анализе бизнес-процессов
- •Для проверки автокорреляции в уровнях ряда также используется и критерий Дарбина-Уотсона. Гипотеза о наличии автокорреляции проверяется с помощью случайной величины:
- •13.2. Модели авторегрессионных преобразований
- •Раздел III. Прогнозирование тенденций в бизнес-процессах
- •Глава 14. Прогнозирование на основе одномерных временных рядов
- •14.1. Простейшие методы прогнозирования
- •14.2. Прогнозирование на основе экстраполяции тренда
- •Прогнозирование с учетом дисконтирования информации
- •14.4. Прогнозирование на основе кривых роста
- •14.5. Прогнозирование рядов динамики, не имеющих тенденции
- •Глава 15. Прогнозирование многомерных временных рядов
- •Глава 16. Оценка точности и надежности прогнозов
9.4. Средние показатели рядов динамики
Каждый ряд динамики можно рассматривать как некую совокупность m меняющихся во времени показателей, которые можно обобщать в виде средних величин. Для обобщения данных по рядам динамики рассчитываются: средний уровень ряда; средний абсолютный прирост; средний темп роста и прироста.
Средний
уровень ряда
динамики ()
рассчитывается по средней хронологической.Средней
хронологической
называется средняя, исчисленная из
значений, изменяющихся во времени.
Такие средние обобщают хронологическую
вариацию. В хронологической средней
отражается совокупность тех условий,
в которых развивалось изучаемое явление
в данном промежутке времени.
Для разных видов рядов динамики средний уровень рассчитывается неодинаково.
Для интервальных равноотстоящих рядов средний уровень находится по формуле простой средней арифметической.
Для интервальных неравноотстоящих рядов средний уровень находится по формуле взвешенной средней арифметической.
где уi - уровень ряда динамики;
n - число уровней;
ti - длительность интервала времени между уровнями.
Средний уровень моментного равноотстоящего ряда динамики находится по формуле средней хронологической простой:
(9.8)
Средний уровень моментных рядов динамики с неравноотстоящими уровнями определяются по формуле средней хронологической взвешенной:
(9.9)
где yi, yn - уровни рядов динамики;
ti - длительность интервала времени между уровнями.
Обобщающим показателем скорости изменения явления во времени является средний абсолютный прирост за весь период, ограничивающий ряд динамики. Для его определения можно воспользоваться формулой средней арифметической простой:
(9.10.)
или
(9.11)
Сводной обобщающей характеристикой интенсивности изменения уровней ряда динамики служит средний темп роста, показывающий, во сколько раз в среднем за единицу времени изменился уровень динамического ряда.
Необходимость исчисления среднего темпа роста возникает вследствие того, что темпы роста из года в год колеблются. Кроме того, средний темп роста часто нужно определять в тех случаях, когда имеются данные об уровне в начале какого-либо периода и в конце его, а промежуточные данные отсутствуют.
Средний темп (коэффициент) роста рассчитывается по формуле средней геометрической из цепных коэффициентов роста:
Поскольку всякий темп роста является
отношением уровней ряда динамики, так,
что
в формуле средней геометрической темпы
роста заменяются соответствующим
отношением уровней. Заменив темпы роста
выражающими их отношениями и учитывая,
что эти величины перемножаются, найдем
подкоренное выражение как:
Следовательно, средний темп роста может быть выражен формулой:
(9.13)
Когда приходится вести расчет средних темпов роста по периодам различной продолжительности (разноотстоящие ряды динамики), то пользуются средними геометрическими, взвешенными по продолжительности периодов. Формула средней геометрической взвешенной будет иметь вид:
(9.14)
где t - интервал времени, в течении которого сохраняется данный темп роста;
S- сумма отрезков времени периода.
Средний темп прироста не может быть определен непосредственно на основании последовательных темпов прироста или показателей среднего абсолютного прироста. Для его вычисления необходимо вначале найти средний темп роста, а затем уменьшить его на единицу или 100%:
(9.15)