
- •Министерство образования российской федерации
- •Содержание
- •1.2. Основные категории статистики
- •Глава 2. Сводка и группировка статистических данных
- •2.1. Задачи сводки и ее содержание
- •2.2. Метод группировок и его место в системе статистических методов
- •2.3. Виды статистических группировок
- •2.4. Принципы построения статистических группировок
- •2.5. Сравнимость статистических группировок. Вторичная группировка
- •2.6. Статистическая таблица и ее элементы
- •2.7. Виды таблиц по характеру подлежащего
- •2.8. Виды таблиц по разработке сказуемого
- •2.9. Правила построения статистических таблиц
- •2.10. Чтение и анализ статистической таблицы
- •Глава 3. Теория статистических показателей
- •3.1. Абсолютные показатели
- •3.2. Относительные показатели
- •3.3. Средние показатели
- •3.4. Структурные средние
- •Глава 4. Показатели вариации в анализе социально-экономических явлений и процессов
- •4.1. Основные показатели вариации
- •4.2 Показатели вариации в анализе взаимосвязей
- •Глава 5. Статистическое изучение взаимосвязи социально-экономических явлений
- •5.1. Причинность, регрессия, корреляция
- •5.2. Парная регрессия
- •5.3. Множественная (многофакторная) регрессия
- •5.4. Параметрические методы изучения связи
- •5.5. Принятие решений на основе уравнений регрессии
- •5.6. Методы изучения связи качественных признаков
- •5.7. Ранговые коэффициенты связи
- •Глава 6. Индексный метод анализа
- •6.1. Общие понятия об индексах
- •6.2. Средние формы сводных индексов
- •6.3. Сводные индексы в анализе последовательных временных периодов
- •6.4. Индексный анализ влияния структурных изменений
- •Раздел II. Моделирование бизнес-процессов Глава 7. Априорный анализ компонент временного ряда
- •7.1. Понятие и основные принципы экономико-статистического анализа
- •7.2. Характеристика и принципы формирования информационной базы
- •7.3. Априорный анализ и его роль в статистическом моделировании
- •Глава 8. Теоретические аспекты моделирования и прогнозирования бизнес-процессов
- •8.1. Система статистических понятий и категорий, применяемых в моделировании и прогнозировании бизнес-процессов
- •8.2. Модель как отображение действительности
- •8.3. Сущность и классификация статистических прогнозов
- •8.4. Этапы построения статистических прогнозов
- •Глава 9. Методологические аспекты оценки скорости и интенсивности изменения бизнес-процессов
- •9.1. Понятие о рядах динамики и их виды
- •9.2. Сопоставимость уровней и смыкание рядов динамики
- •9.3. Аналитические показатели ряда динамики
- •9.4. Средние показатели рядов динамики
- •Глава 10. Моделирование основных тенденций и закономерностей бизнес-процессов
- •10.1. Особенности статистического анализа одномерных временных рядов по компонентам
- •10.2. Методы выявления тенденции временного ряда
- •10.4. Модели тенденции бизнес-процессов
- •10.5. Выбор формы тренда
- •Глава 11. Моделирование фактора случайности в бизнес-процессах
- •Глава 12. Моделирование периодической компоненты бизнес-процессов
- •Методы выявления сезонной компоненты
- •Модели сезонных колебаний
- •Глава 13. Моделирование связных временных рядов
- •13.1. Проблема автокорреляции в анализе бизнес-процессов
- •Для проверки автокорреляции в уровнях ряда также используется и критерий Дарбина-Уотсона. Гипотеза о наличии автокорреляции проверяется с помощью случайной величины:
- •13.2. Модели авторегрессионных преобразований
- •Раздел III. Прогнозирование тенденций в бизнес-процессах
- •Глава 14. Прогнозирование на основе одномерных временных рядов
- •14.1. Простейшие методы прогнозирования
- •14.2. Прогнозирование на основе экстраполяции тренда
- •Прогнозирование с учетом дисконтирования информации
- •14.4. Прогнозирование на основе кривых роста
- •14.5. Прогнозирование рядов динамики, не имеющих тенденции
- •Глава 15. Прогнозирование многомерных временных рядов
- •Глава 16. Оценка точности и надежности прогнозов
9.2. Сопоставимость уровней и смыкание рядов динамики
Важнейшим условием правильного построения ряда динамики являются сопоставимость всех входящих в него уровней. Данное условие решается либо в процессе сбора и обработки данных, либо путем их пересчета.
Проблема сопоставимости данных особенно остро стоит в рядах динамики, потому что они могут охватывать значительные периоды времени, за которые могли произойти изменения, приводящие к несопоставимости статистических рядов. Рассмотрим основные причины несопоставимости уровней ряда динамики.
Несопоставимость уровней ряда может возникнуть вследствие изменения единиц измерения и единиц счета. Нельзя сравнивать и анализировать цифры о производстве тканей, если за одни годы оно дано в погонных метрах, а за другие – в квадратных метрах.
На сопоставимость уровней ряда динамики непосредственно влияет методология учета или расчета показателей. Например, если в они годы среднюю урожайность считали с засеянной площади, а в другие – с убранной, то такие уровни будут несопоставимы.
В процессе развития во времени, прежде всего, происходят количественные изменения явлений, а затем на определенных ступенях совершаются качественные скачки, приводящие к изменению закономерностей явления. Поэтому научный подход к изучению рядов динамики заключаются в том, чтобы ряды, охватывающие большие периоды времени, расчленять на такие, которые бы объединяли лишь однокачественные периоды развития совокупности, характеризующейся одной закономерностью развития.
Процесс выделения однородных этапов развития рядов динамики носит название периодизации динамики. Вопрос о том, какие этапы развития прошло то или иное явление за определенный исторический отрезок времени, решается теорией той науки, к области которой относится изучаемая совокупность явлений.
Важно также, чтобы в ряду динамики интервалы или моменты, по которым определены уровни, имели одинаковый экономический смысл. Уровни ряда динамики могут оказаться несопоставимыми по кругу охватываемых объектов вследствие перехода ряда объектов из одного подчинения в другое.
Несопоставимость уровней ряда может возникнуть вследствие изменений территориальных границ областей, районов и так далее.
Следовательно, прежде чем анализировать динамический ряд, надо, исходя из цели исследования, убедится в сопоставимости уровней ряда и, если последняя присутствует, добиться ее дополнительными расчетами. Для того, чтобы привести уровни ряда динамики к сопоставимому виду, иногда приходится прибегать к приему, который носит название смыкания рядов динамики. Под смыканием понимают объединение в один ряд (более длинный) двух или нескольких рядов динамики, уровни которых исчислены по разной методологии или в разных территориальных границах. Для осуществления смыкания необходимо, чтобы для одного из периодов (переходного) имелись данные, исчисленные по разной методологии (или в разных границах).
Другой способ смыкания рядов динамики заключается в том, что уровни года, в котором произошли изменения, как до изменений, так и после изменений принимаются за 100%, а остальные пересчитываются в процентах по отношению к этим уровням соответственно.
Та же проблема приведения к сопоставимому виду возникает и при параллельном анализе развития во времени экономических показателей отдельных стран, административных и территориальных районов. Это, во-первых, вопрос о сопоставимости цен сравниваемых стран, во-вторых, вопрос о сопоставимости методики расчета сравниваемых показателей. В таких случаях ряды динамики приводятся к одному основанию, то есть к общей базе сравнения, принятой за единицу или 100%. В зависимости от цели анализа в качестве общей базы (основания) каждого ряда могут быть приняты: а) начальный уровень; б) какой-либо другой характерный уровень; в) средний уровень за тот или иной период (в том числе за весь изучаемый период).
Если уровни сравниваемых рядов систематически растут (или снижаются), за базу сравнения целесообразно принять начальный уровень. Если же уровни то повышаются, то понижаются, базу сравнения необходимо расширить, приняв за нее средний уровень. Это сделает базу сравнения более характерной, типичной и устойчивой. В частности, при отсутствии явной тенденции к росту или снижению, а также при волнообразных, периодических колебаниях уровней в качестве общей базы сравнения целесообразно применять средний уровень за весь период.
Несопоставимость уровней сравниваемых рядов таким образом нивелируется, и их можно сравнить. Темпы развития целесообразно сравнивать только путем деления большего из них на меньший. При этом оба сравниваемых темпа роста должны характеризовать одинаковый по направлению процесс, то есть либо рост, либо снижение уровня динамического ряда.
Коэффициент, показывающий во сколько раз один базисный (конечный) темп роста больше другого, называется коэффициентом опережения по темпам роста (или прироста) или коэффициентом относительного опережения (Ко):
(ТА>ТБ),
(9.1)
где Тр(А) – конечный базисный темп роста явления А;
Тр(Б) – конечный базисный темп роста явления Б.
Если для сравнения темпы прироста или
среднегодовые темпы роста или прироста,
в формуле (3.1) вместо Тр берутся
соответственно Тпр,
или
.
При сравнении среднегодовых темпов
коэффициент относительного опережения
также будет среднегодовым.