
- •Министерство образования российской федерации
- •Содержание
- •1.2. Основные категории статистики
- •Глава 2. Сводка и группировка статистических данных
- •2.1. Задачи сводки и ее содержание
- •2.2. Метод группировок и его место в системе статистических методов
- •2.3. Виды статистических группировок
- •2.4. Принципы построения статистических группировок
- •2.5. Сравнимость статистических группировок. Вторичная группировка
- •2.6. Статистическая таблица и ее элементы
- •2.7. Виды таблиц по характеру подлежащего
- •2.8. Виды таблиц по разработке сказуемого
- •2.9. Правила построения статистических таблиц
- •2.10. Чтение и анализ статистической таблицы
- •Глава 3. Теория статистических показателей
- •3.1. Абсолютные показатели
- •3.2. Относительные показатели
- •3.3. Средние показатели
- •3.4. Структурные средние
- •Глава 4. Показатели вариации в анализе социально-экономических явлений и процессов
- •4.1. Основные показатели вариации
- •4.2 Показатели вариации в анализе взаимосвязей
- •Глава 5. Статистическое изучение взаимосвязи социально-экономических явлений
- •5.1. Причинность, регрессия, корреляция
- •5.2. Парная регрессия
- •5.3. Множественная (многофакторная) регрессия
- •5.4. Параметрические методы изучения связи
- •5.5. Принятие решений на основе уравнений регрессии
- •5.6. Методы изучения связи качественных признаков
- •5.7. Ранговые коэффициенты связи
- •Глава 6. Индексный метод анализа
- •6.1. Общие понятия об индексах
- •6.2. Средние формы сводных индексов
- •6.3. Сводные индексы в анализе последовательных временных периодов
- •6.4. Индексный анализ влияния структурных изменений
- •Раздел II. Моделирование бизнес-процессов Глава 7. Априорный анализ компонент временного ряда
- •7.1. Понятие и основные принципы экономико-статистического анализа
- •7.2. Характеристика и принципы формирования информационной базы
- •7.3. Априорный анализ и его роль в статистическом моделировании
- •Глава 8. Теоретические аспекты моделирования и прогнозирования бизнес-процессов
- •8.1. Система статистических понятий и категорий, применяемых в моделировании и прогнозировании бизнес-процессов
- •8.2. Модель как отображение действительности
- •8.3. Сущность и классификация статистических прогнозов
- •8.4. Этапы построения статистических прогнозов
- •Глава 9. Методологические аспекты оценки скорости и интенсивности изменения бизнес-процессов
- •9.1. Понятие о рядах динамики и их виды
- •9.2. Сопоставимость уровней и смыкание рядов динамики
- •9.3. Аналитические показатели ряда динамики
- •9.4. Средние показатели рядов динамики
- •Глава 10. Моделирование основных тенденций и закономерностей бизнес-процессов
- •10.1. Особенности статистического анализа одномерных временных рядов по компонентам
- •10.2. Методы выявления тенденции временного ряда
- •10.4. Модели тенденции бизнес-процессов
- •10.5. Выбор формы тренда
- •Глава 11. Моделирование фактора случайности в бизнес-процессах
- •Глава 12. Моделирование периодической компоненты бизнес-процессов
- •Методы выявления сезонной компоненты
- •Модели сезонных колебаний
- •Глава 13. Моделирование связных временных рядов
- •13.1. Проблема автокорреляции в анализе бизнес-процессов
- •Для проверки автокорреляции в уровнях ряда также используется и критерий Дарбина-Уотсона. Гипотеза о наличии автокорреляции проверяется с помощью случайной величины:
- •13.2. Модели авторегрессионных преобразований
- •Раздел III. Прогнозирование тенденций в бизнес-процессах
- •Глава 14. Прогнозирование на основе одномерных временных рядов
- •14.1. Простейшие методы прогнозирования
- •14.2. Прогнозирование на основе экстраполяции тренда
- •Прогнозирование с учетом дисконтирования информации
- •14.4. Прогнозирование на основе кривых роста
- •14.5. Прогнозирование рядов динамики, не имеющих тенденции
- •Глава 15. Прогнозирование многомерных временных рядов
- •Глава 16. Оценка точности и надежности прогнозов
7.3. Априорный анализ и его роль в статистическом моделировании
Оценка эффективности и деловой активности субъектов экономического процесса и состояния социальной инфраструктуры общества во многом зависит от качества статистического анализа эмпирического материала, от того, насколько точно будут выявлены и научно обоснованны закономерности и тенденции развития.
Основные трудности, связанные с применением количественных математико-статистических методов, заключаются в том, что они достаточно нейтральны к исследуемым социально-экономическим процессам.
Поэтому основным этапом проведения статистического исследования на информационной базе, характеризующей реальные социально-экономические явления, является критическая оценка исходных данных с точки зрения их достоверности и научной обоснованности, которая в статистическом моделировании реализуется методами априорного анализа, включающего в себя:
выявление экономически обоснованных и существенных причинно-следственных связей между признаками и явлениями;
оценку однородности исследуемой совокупности;
анализ характера распределения совокупности по изучаемым признакам.
Понятия, используемые при проведении анализа статистическими методами, должны быть точно определены.
Необходимо четко определить, к какому моменту или периоду времени относится исследуемое явление или процесс.
Одной из основополагающих предпосылок проведения научно-обоснованного статистического анализа, адекватно отражающего причинно-следственные связи и зависимости, тенденции развития реальных явлений и процессов в динамике, является однородность статистической совокупности.
Анализ однородности статистической совокупности целесообразно проводить в следующей последовательности:
определение степени однородности всей совокупности по одному или нескольким существенным признакам;
определение и анализ аномальных наблюдений;
выбор оптимального варианта выделения однородных совокупностей.
В статистической теории и практике разработаны различные подходы к оценке степени однородности. Проблемой оценки однородности совокупности занимались такие известные ученые, как Ю. Аболенцев, Г. Кильдишев, В. Овсиенко и др.
Наиболее сложным и дискуссионным является вопрос о способах и критериях выделения однородных групп объектов в пределах исходной совокупности.
Важной предпосылкой получения научно-обоснованных результатов статистического анализа и моделирования является проверка и выполнение гипотезы о близости распределения эмпирических данных нормальному закону. Для нормального закона распределения характерно:
;
As
= 0; Ex
= 0
Одним
из недостатков данного подхода к оценке
характера распределения является
наличие субъективности в анализе
достаточности величины отклонения
от Me
и Mo
от Me
для подтверждения гипотезы.
Любая исследуемая совокупность, наряду со значениями признаков, сложившихся под влиянием факторов, непосредственно характерных для анализируемой совокупности, может содержать и значения признаков, полученных под воздействием иных факторов, не характерных для основной совокупности.
Такие значения резко выделяются и, следовательно, использование методологии статистического моделирования без предварительного анализа и изучения аномальных наблюдений приводит к серьезным ошибкам при анализе. Резко выделяющиеся из общей совокупности наблюдения требуют их изучения.
Причины появления в совокупности аномальных наблюдений можно условно подразделить следующим образом:
внешние, возникающие в результате технических ошибок;
внутренние, объективно существующие.
Такие наблюдения представляют интерес для исследователя, так как могут содержать, за счет влияния особых неучтенных факторов, особую информацию.
На практике, в зависимости от условий места и времени, влияние одних факторов в каждый конкретный исследуемый момент или промежуток времени значительнее, чем других.
Выбор того или иного метода выявления и анализа аномальных наблюдений определяется объемом совокупности, характером исследуемых процессов и задач (одномерные и многомерные).
При реализации одномерных задач, как при анализе динамической, так и при анализе статической информации, наиболее широкое применение получил метод выявления аномальных наблюдений, основанный на определении q - статистики:
(7.1)
где yt - отдельные уровни ряда;
-
средний уровень ряда;
σy - среднеквадратическое отклонение значений ряда от их
среднего уровня.
Если для расчетного значения выполняется неравенство:
qt ≥ qt кр (р) (7.2)
с заранее заданными уровнями вероятности, то данное наблюдение считается аномальными и, после логико-экономического анализа причин ошибок аномальности, подлежит замене скорректированным значением (в случае ошибки "I") и не подлежат корректировке (в случае ошибки "II").
Корректировка осуществляется по схеме:
Рассчитывается новое значение уровня ряда:
.
(7.3)
2.
заменяется в ряду на
.
Определяются новые характеристики ряда с
:
и
.
Рассчитывается следующее значение:
.
(7.4)
Проверяется аномальность значения
:
,
(7.5)
где
ε - заданный уровень точности определения
.
Если
данное условие выполняется, то значение
является скорректированным, не аномальным
значением, занимает место
в ряду и анализу подвергается
.
Если
условие не выполняется, то рекомендуется
рассчитать
и проверить на аномальность.
Процесс корректировки носит итерационный характер.
В рядах динамики наибольшее распространение получил метод Ирвина, основанный на определении λ - статистики. При его использовании выявление аномальных наблюдений производится по схеме:
(7.6)
Если расчетное значение превысит уровень критического (с заданным уровнем точности и числом наблюдений) (таблица 1.1), то расчетное значение признается аномальным.
Схема
реализации данного метода аналогична
предыдущей с той лишь разницей, что
заменяется на yi-1
(предыдущее значение ряда).
Способ, основанный на расчете q - статистики применим для относительно стационарных рядов, так как при использовании для анализа динамических рядов, имеющих ярко выраженную тенденцию, он приведет к ошибкам.
Способ, основанный на расчете q - статистики применим для относительно стационарных рядов, так как при использовании для анализа динамических рядов, имеющих ярко выраженную тенденцию, он приведет к ошибкам.
Таблица 7.1
Табулированные значения λi.
Число наблюдений |
λкр | |
0,95 |
0,99 | |
2 3 10 20 30 50 100 |
2,8 2,2 1,5 1,3 1,3 1,1 1,0 |
3,7 2,9 2,0 1,8 1,7 1,6 1,5 |
Более
корректным является использование
статистики, в которой определяются
отклонения от теоретических значений,
полученных по уравнению тренда
:
(7.7)
Нецелесообразность исключения аномальных явлений из изучаемой совокупности реализуется широким использованием метода группировок.
Важной задачей статистических исследований на этапе априорного анализа является выделение однородных групп (даже аномальных). В данном случае эффективно применять в анализе сложные комбинационные группировки с развернутым сказуемым.