Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
книги по статистике / minashkin_v_g_sadovnikova_n_a_shmoylova_r_a_biznes_statistik.doc
Скачиваний:
229
Добавлен:
26.04.2015
Размер:
2.35 Mб
Скачать

5.5. Принятие решений на основе уравнений регрессии

Интерпретация моделей регрессии осуществляется методами той отрасли знаний, к которой относится исследуемое явление. Но всякая интерпретация начинается со статистической оценки уравнения регрессии в целом и оценки значимости входящих в модель факторных признаков.

Чем больше величина коэффициента регрессии, тем значительнее влияние данного признака на моделируемый.

Знаки коэффициентов регрессии говорят о характере влияния на результативный признак. Если факторный признак имеет знак плюс, то с увеличением данного фактора результативный признак возрастает; если факторный признак имеет знак минус, то с его увеличением результативный признак уменьшается.

Если экономическая теория подсказывает, что факторный признак должен иметь положительное значение, а он имеет знак минус, то необходимо проверить расчеты параметров уравнения регрессии. Такое явление чаще всего бывает в силу допущенных ошибок при решении. Однако следует иметь ввиду, что когда рассматривается совокупное влияние факторов, то в силу наличия взаимосвязей между ними характер их влияния может меняться.

С целью расширения возможностей экономического анализа, используются частные коэффициенты эластичности, определяемые по формуле:

(5.11)

где - среднее значение соответствующего факторного признака;

- среднее значение результативного признака;

- коэффициент регрессии при соответствующем факторном признаке.

Коэффициент эластичности показывает на сколько процентов в среднем изменится значение результативного признака при изменении факторного признака на 1%.

Частный коэффициент детерминации:

(5.12)

где - парный коэффициент корреляции между результативным и- ым факторным признаком;

- соответствующий стандартизованный коэффициент уравнения множественной регрессии:(5.13)

Частный коэффициент детерминации показывает на сколько процентов вариация результативного признака объясняется вариацией - го признака, входящего в множественное уравнение регрессии.

Наиболее полная экономическая интерпретация моделей регрессии позволяет выявить резервы развития и повышения деловой активности субъектов экономики.

5.6. Методы изучения связи качественных признаков

При наличии соотношения между вариацией качественных признаков говорят об их ассоциации, взаимосвязанности. Для оценки связи в этом случае используют ряд показателей.

Коэффициент ассоциации и контингенции. Для определения тесноты связи двух качественных признаков, каждый из которых состоит только из двух групп, применяются коэффициенты ассоциации и контингенции.

Для их вычисления строится таблица, которая показывает связь между двумя явлениями, каждое из которых должно быть альтернативным, то есть состоящим из двух качественно отличных друг от друга значений признака.

Таблица 5.3

Таблица для вычисления коэффициентов ассоциации и контингенции

a

b

a+b

c

d

c+d

a+c

b+d

a+b+c+d

Коэффициенты вычисляются по формулам:

ассоциации: (5.14)

контингенции: (5.15)

Коэффициент контингенции всегда меньше коэффициента ассоциации. Связь считается подтвержденной, если или.

Когда каждый из качественных признаков состоит более чем из двух групп, то для определения тесноты связи возможно применение коэффициента взаимной сопряженности Пирсона-Чупрова. Этот коэффициент вычисляется по следующей формуле:

;(5.16)

где - показатель взаимной сопряженности;

- определяется как сумма отношений квадратов частот каждой клетки таблицы к произведению итоговых частот, соответствующего столбца и строки. Вычитая из этой суммы «1», получим величину:

;

- число значений (групп) первого признака;

- число значений (групп) второго признака.

Чем ближе величина и Kч к 1, тем теснее связь.

Таблица 5.4

Вспомогательная таблица для расчета коэффициента

взаимной сопряженности

у

х

I

II

III

Всего

I

II

III

Итого

Особое значение для оценки связи имеет биссериальный коэффициент корреляции, который дает возможность оценить связь между качественным альтернативным и количественным варьирующим признаками. Данный коэффициент вычисляется по формуле:

(5.17)

где и- средние в группах;

- среднее квадратическое отклонение фактических значений признака от среднего уровня;

- доля первой группы;

- доля второй группы;

- табулированные (табличные) значения-распределения в зависимости от.

Величина биссериального коэффициента корреляции также подтверждает умеренную тесноту связи между изучаемыми признаками.