Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_kurs_2_semestr / 2_seminar_po_genetike.doc
Скачиваний:
319
Добавлен:
26.04.2015
Размер:
80.9 Кб
Скачать

1. Структура ДНК. Молекула ДНК имеет двойную спираль, состоящую из двух антипаралельных нуклеотидных цепей с общей осью.Диаметр двойной спирали ДНК равен 2 нм.а расстояние между витками3,4 нм. На каждый виток спирали приходится 10 пар нуклеотидов, отсюда расстояние между азотистыми равно 0,34 нм. Каждая из цепей является полинуклеотидом и включает нуклеотиды четырех типов. В состав нуклеотида входят дезоксирибоза, фосфатный остаток и одно из азотистых оснований пуриновое или пиримидиновое. К пуриновым относятся аденин и гуанин. К пиримидиновым- тимин и цитозин. Соединение пуринового или пиримидинового основания с дезоксирибозой приводит к образованию нуклеотид. По хим.составу. любой нуклеотид– это фосфорный эфир нуклеозидов. Наследственная информация зашифрована различной последовательностью оснований четырех типов. Аденин одной цепи всегда связан только с тимином другой цепи.а гуанин-только с цитозином.Пара аденин-тимин соединенная двумя водородными связями.а пара гуанин-цитозин – тремя. Такой порядок соответствия азотистых оснований (А-Т и Г-Ц) называется комплементарностью. В ДНК обе цепи взаимно дополняют друг друга.т.е. они комплементарны.

2. Синтез ДНК и РНК Синтез ДНК – репликация ДНК – процесс самоудвоения ДНК. Происходит в S – период интерфазы. Репликация всех двуцепочечных ДНК поликонсервативна, т.е. в дочерней молекуле одна цепь родительская, а другая построена вновь. Репликация начинается в особых точках молекулы ДНК – точках инициации синтеза или точках ori. У прокариот на единственной молекуле ДНК имеется одна точка ori. У эукариот на одной молекуле ДНК (число молекул ДНК = числу хромосом) множество точек ori, расположенных на расстоянии 20000 пар нуклеотидов др. от друга. Материнская молекула ДНК начинает расходиться на 2 цепи в точке ori с образованием вилки репликации на материнской цепи (ориентированной 3'–5'). Дочерняя цепь строится из свободных дезоксинуклеотидов ядра сразу в направлении 5'-3'. И это строительство совпадает с удвоением вилки репликации, эта дочерняя цепь наз-ся лидирующей. На материнской цепи ДНК, антипараллельно матричной, дочерняя цепь запаздывающая, она строится отдельными кусками или фрагментами – указаки, т.к. направление строительства противоположно движению вилки репликации. Для начала синтеза ДНК требуется прайнер – короткая РНК – затравка длиной 5-10 рибонуклеотидов. Прайнер связывает первый свободный дезоксинуклеотид и начинает строить дочерние цепи ДНК. В лидирующей цепи прайнер один, а в запаздывающей у каждого отрезка указаки – длина этих отрезков 100-200 нуклеотидов у высших организмов, 1000-2000 у прокариот. Ферменты репликации: для синтеза прайнеров нужна РНК – полимераза. для образования эфирных связей между фосфатами дезоксинуклеотидов при строительстве цепи ДНК нужна ДНК полимеразы. Для вырезания прайнеров, неправильно включённых в состав ДНК нуклеотидов, нужна ДНК – экзонуклеаза. Для сшивания фрагментов указаки в сплошную запаздывающую дочернюю цепь нужен фермент ДНГ – лигаза. Скорость синтеза ДНК у эукариот 10-100 пар нуклеотидов в секунду, а у прокариот 1500 пар (в одном месте). Репликация по типу катящегося колеса. Двухцепочечная кольцевая ДНК надрезается в точке начала катящегося кольца. Причём надрезается одна цепь из двух – матричная. К освободившемуся 3' концу этой цепи начинают пристраиваться свободные дезоксинуклеотиды. По мере удлинения дочерней цепи ДНК 5' конец из материнского кольца вытесняется. Когда 3' и 5' концы встретятся в одной точке, синтез ДНК прекращается и дочернее кольцо отделяется от материнского.

3.Строение РНК и типы РНК. Молекулы РНК имеют одну полинуклеотидную цепь. В состав нуклеотидов РНК входит пуриновое основание-аденин или гуанин и пиримидиновое – урацил или цитозин, углеводный компонент рибоза и остатки фосфорной кислоты. По составу от ДНК она отличается – вместо дезоксирибозы содержит рибозу и вместо тимина – урацил. Нуклеотиды молекулыРНК наз-ся адениловая кислота, гуаниловая, уридиловая и цитидиловая кислота. Существует три основных типа РНК: 1)Информационная(она же матричная) иРНК – ее роль.заключается в том что она переписывает наследственную инф-ию с участка ДНК(гена) и в форме скопированной последовательности азотистых оснований переносят ее в рибосомы, где происходит синтез определенного белка. Каждый триплет иРНК называется кодоном, от него зависит, какая встанет аминокислота в данном месте при синтезе белка. В рибосомах иРНК выполняет уже роль матриц в процессе синтеза белка. 2)Транспортная тРНК- ее роль,переносит аминокислоты к рибосомам и участвунт в процессе синтеза белка. Каждая аминокислота присоединяется к определенной тРНК. Для ряда аминокислот открыто более одной тРНК. 3)Рибосомальная рРНК. Био-ую функция до конца не выяснена. А.С.Спирит считает что одна из функций рРНК – образование «каркаса» определяющего морфологию рибосомы.(рРНК накапливается в ядрышках клетки от туда поступает в цитоплазму.) 4.Генетический код Генетический код - свойственная живым организмам единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Каждый нуклеотид обозначается заглавной буквой, с которой начинается название азотистого основания, входящего в его состав: - А (A) аденин; - Г (G) гуанин; - Ц (C) цитозин; - Т (T) тимин (в ДНК) или У (U) урацил (в мРНК). Реализация генетического кода в клетке происходит в два этапа: транскрипцию и трансляцию. Первый из них протекает в ядре; он заключается в синтезе молекул и-РНК на соответствующих участках ДНК. При этом последовательность нуклеотидов ДНК "переписывается" в нуклеотидную последовательность РНК. Второй этап протекает в цитоплазме, на рибосомах; при этом последовательность нуклеотидов и-РНК переводится в последовательность аминокислот в белке: этот этап протекает при участии транспортной РНК (т-РНК) и соответствующих ферментов. Свойства ген.кода. 1. Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон). 2. Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно. 3. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки). 4. Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (о

5. Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов. 6. Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже). 7. Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

5. Современное представление о структуре и функциях гена. Ген - совокупность сегментов ДНК, которые вместе образуют наследственную единицу, отвечающую за функциональную продуктивность, т.е.за белок или т-РНК, или р-РНК. В сост входит: 1) единица транскрипции, т.е.участок ДНК, кодирующий не зрелую РНК; 2) промотр – длина гена может быть от 190-16000 пар нуклеотид. Ген явл единицей ф-и, т.е.есть ген целиком, а не отдельн его куски, кодирует РНК. Явл единицей мутации и един рекомбинации могут быть отдельные нуклеотиды в гене, т.е.даже 2 соседн. нуклеотиды могут разъединить с помощью кроссинговера и даже 1 нуклеотид может мутировать, место мутации в гене наз сайт. Сайты, на которых мутации происход. часто – горячи точки. У прокариотов гены непрерывные, т.е. сост. только из экзонов.у эукориотов гены прерывистые, т.е. сост. из экзонов и интронов. Перекрывающий ген – ген явл. частью др. гена, происходит наложение рамок считывания. При образовании зрелой и-РНК один экзон может соединиться с др. экзонам, образуется семейство, близких по строению и-РНК. Гены способны перемещаться - троспозоны. Ген и его копии и псевдогены образ семейство. 2 группы ДНК: структурные - кодируют белки и и-РНК; регуляторы – регулируют работу структурных генов. На эти 2 группы генов приходится от 15-98% всей ДНК, а остальная ДНК – избыточная, они копируют уже имеющиеся гены. Синтез ДНК

6. Строение генетического материала у бактерий и вирусов.

БАКТЕРИИ. Химический состав клеток бактерий в основном такой же, как и у клеток высокоорганизованных организмов. Они окружены оболочкой, внутри которой находится цитоплазма, ядерный аппарат, рибосомы, ферменты и другие включения. В отличие от клеток эукариот в клетках бактерий отсутствуют митохондрии, аппарат Гольджи, эндоплазматическая сеть. Цитоплазма бактерий представляет собой коллоидную часть клетки с гранулярной (зернистой) структурой. Основную массу гранул составляют рибосомы с константой седиментации 70S, участвующие в синтезе белка. В центральной части цитоплазмы бактерий расположен ядерный аппарат - нуклеотид и плазмиды. Ядро прокариот называется нуклеотидом по той причине, что оно в отличии от эукариот не изолировано от цитоплазмы мембраной и представлено одной очень длинной молекулой ДНК (хромосомой). Хромосома бактерии E. coli включает около 5*106 пар оснований, имеет имеет молекулярную массу 3*109 Д.В хромосоме кишечной палочки ДНК замкнута в кольцо и состоит из дискретно расположенных генов. Длина молекулы ДНК в расправленном состоянии достигает 1 мм, что значительно превышает среднюю длину самой бактерии.

ДНК бактерий не отличается по строению от ДНК высших организмов. Она содержит те же четыре нуклеотида, в состав каждого из которых входят дезоксирибоза, остаток фосфорной кислоты и пуриновое (аденин или гуанин) или пиримидиновое (тимин или цитозин) основание. Соединение мононуклеотидных остатков осуществляется сложноэфирными мостиками.

ВИРУСЫ. Вирусная частица содержит в своём составе одну из нуклеиновых кислот, которая окружена белковой оболочкой (капсидом). Геном вирусов может быть представлен двухцепочной или одноцепочной ДНК, одноцепочной или двухцепочной РНК. Типичная частица состоит из головки и хвостового отростка. В головке плотно упакована ДНК. Головку и хвостовой отросток покрывает белковый чехол. На конце хвостового отростка имеются специальные волоконца, облегчающие прикрепление фага к оболочке бактерий.

7. Внехромосомные факторы наследования.

Наследование признаков через цитоплазму называется внехромосомной. Цитоплазма влияет на активность проявления гена. Некоторые её органоиды, имеющие свою систему белкового синтеза (митохондрии, пластиды), могут влиять на развитие определённых признаков. В процессе развития наблюдается сложное взаимодействие ядра и цитоплазмы. Но определяющую роль всё-таки играет ядро.

8. Роль плазмид в определении у бактерий свойств устойчивости к антибиотическим лекарственным веществам.

У некоторых непатогенных и патогенных видов бактерий обнаружены факторы резистентности к лекарственным веществам – R-факторы. Это довольно крупные плазмиды. Они, присутствуя в цитоплазме бактерий и передаваясь их поколения в поколение, обуславливают устойчивость бактерий к действию одного или нескольких лекарственных веществ.

9. Способы передачи наследственной информации у микроорганизмов: трансформация, трансдукция и конъюгация.

В процессе трансформации принимают участие две бактериальные клетки – донор и реципиент. Трансформирующий агент представляет собой часть молекулы ДНК донора, которая внедряется в геном реципиента, изменяя его фенотип. В процессе трансформации клетки донора и реципиента не соприкасаются друг с другом. Механизм переноса генетического материала заключается в том, что из клеток донора выделяются в окружающую среду молекулы или фрагменты молекул ДНК. Сначала ДНК адсорбируется на оболочке клетки реципиента. Затем через определённые рецепторные участки её стенки при помощи специальных клеточных белков ДНК втягивается внутрь клетки. Проникающая донорская ДНК должна быть двухцепочной. В реципиентной клетке она становиться одноцепочной.

Трансдукция – это перенос генов из одной бактериальной клетки в другую при помощи умеренных фагов. При переносе генетического материала происходит замена участка молекулы ДНК фага. Фаг при это теряет свой собственный фрагмент и становиться дефектным. Различают три вида трансдукции: общую, или неспецифическую, специфическую и абортивную.

Конъюгация – это передача генетического материала от одних бактерий другими при их скрещивании.

Соседние файлы в папке 1_kurs_2_semestr