
- •Федеральное агентство железнодорожного
- •Федеральное агентство железнодорожного
- •Требования к уровню освоения содержания дисциплины
- •Объем дисциплины и виды учебной работы
- •Содержание дисциплины
- •4.2. Содержание разделов дисциплины
- •1.1.Основные физико-механические свойства бетона, стальной арматуры и железобетона
- •1.1.1. Основные физико-механические свойства бетона
- •1.2.Экспериментальные основы теории сопротивлении железобетона и методы расчета железобетонных конструкций
- •1.2.1. Экспериментальные данные о работе железобетона под нагрузкой
- •1.2.2. Общий случай расчета прочности нормальных сечений стержневых железобетонных элементов
- •1.3. Изгибаемые элементы
- •1.4. Сжатые элементы
- •1.5. Растянутые элементы
- •1.6. Трещиностойкость и перемещение железобетонных элементов
- •2. Каменные конструкции
- •3. Железобетонные конструкции многоэтажных промышленных и гражданских зданий
- •4. Конструкции одноэтажных сельскохозяйственных и
- •5. Пространственные тонкостенные конструкции
- •6. Инженерные сооружения промышленно-гражданских комплексов
- •7. Особенности железобетонных конструкций зданий и сооружений, эксплуатируемых и возводимых в особых условиях
- •8. Здания и сооружения железнодорожного транспорта: локомотивные и вагонные депо, вокзалы, тяговые подстанции, прирельсовые склады, железнодорожные почтамты и т.П.
- •Перечень курсовых проектов
- •5. Практические занятия
- •6. Лабораторный практикум
- •6. Учебно-методическое обеспечение дисциплины
- •6.1. Рекомендуемая литература
- •7. Материально-техническое обеспечение дисциплины
- •Работа № 1 испытание железобетоннй балки на прочность по ормальным сечениям
- •1.1 Определение расчетных характеристик бетона и арматуры
- •1.1.1 Определение характеристик бетона по результатам испытания стандартных кубов
- •А – схема испытания; б – форма разрушения образца
- •1.1.2 Определение расчетных характеристик арматуры
- •А - расположение опытного образца на испытательном стенде; б – опытный образец после испытания; в – общий вид диаграммы растяжения арматуры класса а400 (a-III)
- •1.2 Геометрические размеры и схема армирования балки
- •1.3 Определение характеристик приведенного сечения
- •1.4 Определение теоретического момента трещинообразования
- •1.5 Определение теоретического разрушающего момента
- •1.6 Схема нагружения балки
- •1.7 Результаты испытания балки
- •1.8 Сопоставление теоретических и экспериментальных данных
- •1.9 Руководство по пользованию программой
- •Программы по испытанию образцов арматуры
- •Работа № 2 испытание железобетонной балки на изгиб с разрушением по наклонным сечениям
- •2.1 Определение расчетных характеристик бетона и арматуры
- •2.1.1 Определение расчетных характеристик бетона по результатам испытания стандартных кубов
- •2.1.2 Определение расчетных характеристик арматуры
- •А - расположение опытного образца на испытательном стенде; б – опытный образец после испытания; в – общий вид диаграммы растяжения арматуры класса в500 (Вр-I)
- •2.2 Геометрические размеры и схема армирования балки
- •2.3 Схема нагружения балки
- •2.4 Определение теоретической разрушающей поперечной силы
- •По наклонным сечениям
- •2.5 Результаты испытания балки
- •2.6 Сопоставление теоретических и экспериментальных значений
- •2.7 Руководство по пользованию программой
- •Работа № 3 испытание железобетонной колонны на прочность при внецентренном сжатии
- •3.1.1 Определение характеристик бетона по результатам испытания стандартных кубов
- •3.1.2 Определение расчетных характеристик арматуры
- •3.2 Геометрические размеры и схема армирования колонны
- •3.3 Схема нагружения колонны
- •3.4 Определение теоретической продольной разрушающей силы
- •3.5 Результаты испытания колонны
- •3.6 Сопоставление теоретических и экспериментальных результатов
- •3.7. Руководство по пользованию программой
- •Работа № 4 испытание предварительно напряженной железобетонной балки
- •4.1 Определение расчетных характеристик бетона и арматуры
- •4.1.1 Определение характеристик бетона на момент отпуска натяжения по результатам испытания стандартных кубов
- •4.1.2 Определение расчетных характеристик арматуры
- •4.2 Геометрические размеры и схема армирования железобетонной балки
- •Железобетонной балки
- •4.3 Определение характеристик приведенного сечения
- •4.4 Определение потерь предварительного напряжения
- •4.5 Определение теоретического момента трещинообразования
- •4.6 Определение теоретического разрушающего момента
- •4.7 Определение теоретического перемещения середины пролета:
- •4.8 Схема нагружения балки
- •4.9 Результаты испытания балки
- •4.10 Сопоставление теоретических и экспериментальных данных
- •4.11 Руководство по пользованию программой
- •Курсовой проект №1
- •1. Содержание и оформление курсового проекта
- •Исходные данные
- •2. Методические указания к выполнению
- •2.1. Общие положения
- •2.2. Компоновка сборного перекрытия и выбор варианта для детальной разработки
- •Указания по проектированию и расчету панели перекрытия
- •Общие принципы проектирования панелей перекрытия
- •2.3.2. Расчет панели на действие эксплуатационных нагрузок
- •Нагрузка на 1 м2 панели целесообразно вести в табличной форме
- •Статический расчет панели перекрытия
- •2.3.5. Компоновка поперечного сечения панели
- •2.3.6. Расчет панели по предельным состояниям первой группы
- •Формула
- •Курсовой проект №2 Проектирование и расчет ригеля
- •2.4.1. Общие указания
- •2.4.2. Выбор расчетной схемы и определение нагрузок
- •Сбор нагрузок на ригель, кН/м
- •2.4.3. Статический расчет ригеля
- •2.4.4. Расчет ригеля по предельным состояниям первой группы
- •Расчет на прочность сечений, наклонных к продольной оси
- •2.5. Проектирование и расчет колонны
- •2.5.1. Общие указания
- •2.5.2. Расчет колонны
- •Сбор нагрузок на колонну, кН/м2
- •2.5.3. Расчет консоли колонны
- •2.5.4. Расчет стыка колонн
- •2.6. Проектирование и расчет центрально загруженного фундамента под колонну
- •2.6.1. Общие указания
- •2.6.2. Подбор арматуры
- •2.6.3. Проверка прочности фундамента на продавливание
- •2.7. Проектирование монолитного ребристого перекрытия с балочными плитами
- •2.7.1. Компоновка конструктивной схемы
- •2.7.2. Расчет плиты монолитного перекрытия
- •2.7.3. Проектирование и расчет второстепенной балки
- •2.8. Проектирование и расчет кирпичного столба первого этажа
- •2.8.1. Общие положения
- •2.8.2. Расчет кирпичного столба первого этажа
- •Методические рекомендации для преподавателей
- •1.Объем дисциплины и виды учебной работы
- •2.Содержание дисциплины
- •Материалы текущего и итогового контроля знаний студентов
Нагрузка на 1 м2 панели целесообразно вести в табличной форме
Вид нагрузки |
Нормативная нагрузка, кН/м2 |
Коэффициент надежности по нагрузке |
Расчетная нагрузка, кН/М2 |
Постоянная I.1. Масса пола: -керамическая плитка(δ=15 мм, γ=1600 кгс/м3) -цементно-песчаная стяжка,(δ=20 мм, γ=1800 кг/м3) -песчаная засыпка(δ=60 мм,γ=1600 кг/м3) I.2. Собственная масса панели
|
0,24
0,36
0,96
2,5 |
1,2
1,2
1,2
1,1 |
0,288
0,38
1,15
2,75 |
Итого I.I. Временная полезная II.1. Длительно действующая II.2. Кратковременная |
4,02
10,0 2,0 |
1,2 1,2 |
4,57
12,0 2,4 |
Полная |
16,02 |
|
18,97 |
Статический расчет панели перекрытия
Статический расчет заключается в определении максимальных внутренних усилий в сечениях панели – изгибающих моментов и поперечных сил:
.
Где Bн номинальная ширина панели.
Множитель Вн переводит нагрузку q, вычисленную на 1м2 панели в нагрузку на погонный метр длины панели.
Для расчета по первой группе предельных состояний внутренние усилия определяются от полной расчетной нагрузки.
Для расчета по второй группе предельных состояний внутренние усилия определяются:
-от нормативной длительно действующей (постоянно плюс длительно временной) gn;
-от нормативной кратковременной vn;
-от нормативной полной qn.
В пояснительной записке должны быть представлены эпюры изгибающих моментов и поперечных сил.
2.3.5. Компоновка поперечного сечения панели
Прежде чем приступить к расчету панели на прочность, необходимо предварительно назначить размеры элементов ее поперечного сечения и заменить его расчетным, несколько упрощенным, учитывающим предпосылки расчета по предельным состояниям (рис. 4).
При расчете ребристой панели по первой группе предельных состояний бетон растянутой зоны не учитывается, поэтому фактическое поперечное сечение панели заменяются расчетным сечением в форме тавра с полкой в сжатой зоне, ширина ребра которого равна суммарной ширине ребер панели (см. рис 4,а).
Для определения расчетной ширины ребра b и толщины полки h’f пустотных панелей их фактическое поперечное сечение заменяется эквивалентным по площади и моменту инерции двутавровым. Круглые пустоты для этой цели заменяют квадратными, сторона которых принимается h=0.9d, где d – диаметр пустоты.
Расчетная ширина ребра тавра или двутавра, к которым приводится фактическое сечение пустотной панели равна :
b=bf’ – nb1,
где n- количество пустот.
Высота поперечного
сечения панели может быть принята не
менее h
= ()l0.
Ширина ребер и
простенков между пустотами должна быть
достаточной для обеспечения прочности
по наклонным сечениям и для размещения
арматурных каркасов и принимается не
менее 6580
мм в ребристых панелях и не менее 30
35
мм в пустотных панелях. Толщина полок
(плит) ребристых панелей принимается
не менее 30 мм, а в пустотных – не менее
30
35
мм.