
- •Глава 7. Геофизические исследования скважин
- •17. Основы теории и технологии геофизических исследований скважин
- •17.1. Физико-геологические основы теории геофизических исследований скважин
- •17.1.1. Скважина как объект разведки недр и геофизических исследований.
- •17.1.2. Принципы решения прямых и обратных задач гис.
- •17.1.3. Физико-геологическая классификация гис.
- •17.2. Принципы устройства каротажных станций и скважинных приборов
- •17.2.1. Состав и назначение оборудования для комплексных геофизических исследований скважин.
- •17.3. Технология проведения работ и обработки данных гис
- •17.3.1. Методы технологического контроля состояния скважин.
- •17.3.2. Кавернометрия.
- •17.3.3. Инклинометрия.
- •17.3.4. Прострелочные работы в скважинах.
- •17.3.5. Обработка каротажных диаграмм.
- •18. Методы и задачи, решаемые геофизическими исследованиями скважин
- •18.1. Электрические методы исследования скважин
- •18.1.1. Метод естественного поля.
- •18.1.2. Метод кажущихся сопротивлений.
- •18.1.3. Другие методы электрометрии скважин.
- •18.2. Ядерные методы исследования скважин
- •18.2.1. Методы изучения естественной радиоактивности горных пород в скважинах.
- •18.2.2. Методы скважинных исследований с искусственным облучением горных пород.
- •18.3. Сейсмоакустические методы исследования скважин
- •18.3.1. Сейсмические методы.
- •18.3.2. Акустические методы.
- •18.4. Другие методы геофизических исследований скважин
- •18.4.1. Термический метод.
- •18.4.2. Магнитный и гравитационный скважинные методы
- •19. Комплексные геофизические исследования скважин
- •19.1. Качественная интерпретация гис
- •19.1.1. Принципы качественной интерпретации гис
- •19.1.2. Геологическое расчленение разрезов скважин
- •19.2. Количественная интерпретация гис
- •19.2.1. Принципы количественной интерпретации гис.
- •19.2.2. Оценка пористости, проницаемости коллекторских свойств и нефтегазоносности пород.
- •19.2.3. Принципы количественной интерпретации гис рудных, угольных, инженерно-гидрогеологических скважин.
- •Список литературы
17.3. Технология проведения работ и обработки данных гис
17.3.1. Методы технологического контроля состояния скважин.
Для документации проходки глубоких скважин, обработки и интерпретации ГИС проводится технологический контроль результатов бурения. Он включает изучение технического состояния скважин (определение углов наклона, азимута забоев, диаметра скважины на разных глубинах, высоты цемента за обсадными трубами, качества цементации и др.), фототелеметрию стенок скважин, перфорацию скважин для допуска в нее воды, нефти, газа и др.
С помощью специального оборудования и обычных автоматических каротажных станций подобный технологический контроль проводится в ходе или после окончания бурения.
17.3.2. Кавернометрия.
Для измерения диаметров скважин применяются специальный прибор - каверномер и оборудование обычной каротажной станции. Каверномер состоит из металлической гильзы, вдоль ствола которой располагаются ромбовидные рычаги-щупы, при подъеме каверномера рычаги под действием пружины раскрываются и плотно прижимаются к стенкам скважины. При изменении угла раскрытия рычагов движется закрепленный на них шток, который связан с ползунковым реостатом. Это приводит к изменению сопротивления реостата и тока в электрической цепи, который подается на регистратор. Установив в процессе градуировки зависимость между током и радиусом раскрытия рычагов, легко перевести график его изменения в кривую изменения диаметра скважины (кавернограмму). Она служит для уточнения геологического разреза, изучения технического состояния скважин и интерпретации результатов скважинных исследований.
17.3.3. Инклинометрия.
Для определения на любой глубине угла отклонения оси скважины от вертикали и азимута ее искривления по отношению к устью применяются специальный прибор - инклинометр и оборудование обычной каротажной станции. В необсаженных скважинах используются электрические инклинометры. В корпусе такого инклинометра помещается свободно подвешенная рамка, которая по отвесу располагается горизонтально. На ней имеется буссоль для измерения азимута и указатель наклона. Стрелка буссоли и указатель наклона рамки скользят по реохордам азимутов и углов наклона, которые поочередно можно подключать к токовой линии инклинометра. Стрелка и указатель передают напряжение с реохордов, пропорциональное азимуту или углу наклона.
В скважинах, обсаженных металлическими трубами, измерение азимута и угла проводят гироскопическими инклинометрами. Принцип работы этих приборов основан на свойстве гироскопа (устройства, маховик которого быстро вращается от специального электромотора) сохранять неизменной в пространстве ось вращения. В инклинометре два гироскопа: один для измерения азимутов, другой - для измерения углов наклона. С помощью особых электрических схем определяются углы, составленные инклинометром (направлением скважины) с осями вращения гироскопов.
Точность
измерения углов инклинометром достигает
30', а азимутов - нескольких градусов.
Если учесть, что глубокая скважина на
разных глубинах может отклоняться от
вертикали на сотни метров, а по азимуту
превышать 360,
то нетрудно понять практическое значение
инклинометрии. Особенно необходима
инклинометрия в скважинах наклонного
бурения.