Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабы БЖД / Laba_2.doc
Скачиваний:
155
Добавлен:
20.04.2015
Размер:
7.2 Mб
Скачать
      1. Нормирование теплового излучения

В существующей нормативно-технической документации нормируются следующие величины:

  • интенсивность теплового облучения, Вт/м2;

  • температура воздуха рабочей зоны, оС;

  • температура нагретых поверхностей технологического оборудования, оС;

  • интегральный показатель тепловой нагрузки среды – ТНС-индекс, оС.

1. Интенсивность теплового облучения qпад, Вт/м2 зависит от доли открытой поверхности тела человека S.

Согласно ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны» [2] интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать значений, приведенных в таблице 2.1.

Таблица 2.1 – Зависимость интенсивности теплового облучения от доли открытой поверхности тела человека S

S

≥0,5

0,25 – 0,5

≤0,25

qпад, Вт/м2

35

70

100

В любом случае облученность работающих открытыми источниками теплового излучения (нагретый металл, стекло, «открытое пламя» и т.п.) не должна превышать 140 Вт/м2, облучению не должно подвергаться более 0,25 поверхности тела при обязательном использовании средств индивидуальной защиты.

2. При наличии теплового облучения температура воздуха в соответствии с ГОСТ 12.1.005-88 [2] не должна превышать на постоянных рабочих местах верхние границы оптимальных значений для теплого периода года, на непостоянных рабочих местах – верхние границы допустимых значений для постоянных рабочих мест (см. таблицу 2.2).

Таблица 2.2 – Допустимые значения температуры воздуха рабочей зоны, оС при наличии теплового излучения

Рабочее место

Категория работы

Легкая

Средняя

Тяжелая

Ia

IIa

IIб

III

Постоянное

25

24

23

22

20

Временное

28

28

27

27

26

3. В целях профилактики тепловых травм температура наружных поверхностей технологического оборудования или ограждающих его устройств не должна превышать 45 °С (ГОСТ 12.1.005-88 [2]).

В соответствии с ГОСТ 12.4.123-83 «Средства коллективной защиты от инфракрасных излучений. Общие технические требования» [3] средства защиты должны обеспечивать температуру поверхностей оборудования не выше 35 °С при температуре внутри теплоисточника до 100 °С и не выше 45 °С при температуре внутри теплоисточника выше 100 °С.

4. ТНС-индекс рекомендуется использовать для оценки сочетанного воздействия параметров микроклимата, в целях осуществления мероприятий по защите работающих от возможного перегревания на рабочих местах, на которых скорость движения воздуха не превышает 0,6 м/с, а интенсивность теплового облучения – 1200 Вт/м2 (см. лабораторную работу №1).

      1. Меры защиты

Основные мероприятия по снижению опасности воздействия ИК излучения на человека включают в себя: снижение интенсивности излучения источника; технические защитные средства; защиту временем, использование средств индивидуальной защиты, лечебно-профилактические мероприятия.

Cогласно ГОСТ 12.4.011-89 «Средства защиты работающих. Общие требования и классификация» [4] средства промышленной теплозащиты должны удовлетворять следующим требованиям:

  • обеспечивать оптимальный теплообмен организма работника со средой обитания;

  • обеспечивать необходимую подвижность воздуха (повышение доли конвективной теплоотдачи) с целью достижения комфортных условий;

  • иметь максимальную эффективность теплозащиты и обеспечивать удобство эксплуатации.

Все средства защиты работающих в зависимости от характера их применения подразделяют на две категории: коллективные и индивидуальные.

В соответствии с ГОСТ 12.4.011-89 [4] и ГОСТ 12.4.123-83 [3] к коллективным средствам теплозащиты относятся устройства: оградительные (экраны, щиты и др.); герметизирующие; теплоизолирующие; вентиляционные (воздушное душирование, аэрация и др.); автоматического контроля и сигнализации; дистанционного управления; знаки безопасности.

Выбор теплозащитных средств в каждом случае должен осуществляться по максимальным значениям эффективности с учетом требований эргономики, технической эстетики, безопасности для данного процесса или вида работ и технико-экономического обоснования.

Механизация и автоматизация производственных процессов, дистанционное управление и наблюдение дают возможность пребывания рабочих вдали от источника радиационной и конвекционной теплоты.

Уменьшению поступления теплоты в цех способствуют мероприятия, обеспечивающие герметичность оборудования. Плотно подогнанные дверцы, заслонки, блокировка закрытия технологических отверстий с работой оборудования – все это значительно снижает выделение теплоты от открытых источников.

Теплоизоляция поверхностей источников излучения (печей, сосудов и трубопроводов с горячими газами и жидкостями) снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационное. Кроме улучшения условий труда тепловая изоляция уменьшает тепловые потери оборудования, снижает расход топлива (электроэнергии или пара) и приводит к увеличению производительности агрегатов.

Теплоизоляция конструктивно может быть мастичной, оберточной, засыпной, с использованием штучных и формовочных изделий (кирпичи и др.) и смешанной.

В настоящее время известно много различных видов теплоизоляционных материалов. К неорганическим материалам относятся: асбест, асбоцемент, вермикулит, керамзит, минеральная вата и войлок, стекловата и стеклоткань, ячеистый бетон и др. Органическими изоляционными материалами являются древесные опилки, пробковые, древесноволокнистые и торфоизоляционные плиты, пенопласт и др. При выборе материала для изоляции необходимо принимать во внимание механические свойства материалов, а также их способность выдерживать высокую температуру.

Теплозащитные экраны применяют для локализации источников лучистой теплоты, уменьшения облученности на рабочих местах и снижения температуры поверхностей, окружающих рабочее место.

По способу крепления на объекте экраны подразделяют на: съемные и встроенные.

По принципу действия экраны подразделяются на: теплоотражающие, теплопоглощающие, теплоотводящие и комбинированные. Отнесение экрана к той или иной группе производится в зависимости от того, какая способность экрана более выражена.

По степени прозрачности экраны делят на: непрозрачные (светопропускание менее 40%), полупрозрачные (светопропускание 40–75%) и прозрачные (светопропускание более 75%). В непрозрачных экранах энергия поглощенных электромагнитных волн превращается в тепловую энергию. Экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное экраном излучение источника теплового излучения. К этому классу относят металлические водоохлаждаемые и футерованные асбестовые, альфолиевые (из алюминиевой фольги), алюминиевые экраны.

В прозрачных экранах пропущенное излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Прозрачные экраны применяются для смотровых проемов пультов и кабин управления, щитков и т.д. Этот класс составляют экраны из различных стекол: силикатного, кварцевого и органического, бесцветного, окрашенного и металлизированного; пленочные водяные завесы, свободные и стекающие по стеклу; вододисперсные завесы. Водяные завесы поглощают поток тепла до 80 % без существенного ухудшения видимости. Высокой эффективностью обладают аквариальные экраны (до 93 %), представляющие собой коробку из двух стекол, заполненную проточной чистой водой с толщиной слоя 15 – 20 мм. Вододисперсная завеса представляет собой плоскую воздушную струю со взвешенными в ней капельками воды (эффективность около 70 %).

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся экраны из металлической сетки, цепные завесы, экраны из стекла, армированного металлической сеткой; для повышения эффективности все эти экраны могут орошаться водяной пленкой.

Примеры характеристик конструкций оградительных устройств (экранов) приведены в Приложении 2.1.

В производственных помещениях для ассимиляции избыточной теплоты предусматривают естественную вентиляцию (аэрацию).

Аэрация – организованный естественный воздухообмен, осуществляемый за счет теплового и ветрового напоров.

При интенсивности теплового облучения на открытых рабочих местах 350 Вт/м2 и выше и температуре воздуха не ниже 27 – 28 °С при проведении средней и тяжелой физической работы применяют зональное мелкодисперсное распыление воды. Водяная пыль, попадая на одежду и тело работающего, испаряясь, способствует охлаждению, а вдыхаемая водяная пыль предохраняет слизистые оболочки дыхательных путей от высыхания.

Для создания комфортных микроклиматических условий в ограниченном объеме (например, на рабочем месте) применяются: воздушные оазисы, воздушные завесы и воздушные души.

Воздушный оазис создают в отдельных зонах рабочих помещений с высокой температурой. Для этого часть рабочего помещения ограничивают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 – 0,4 м/с.

Воздушные завесы создают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10 – 15 м/с) под некоторым углом навстречу холодному потоку.

При воздействии на работающего теплового облучения интенсивностью 350 Вт/м2 и более, а также 175 – 350 Вт/м2 при площади излучающих поверхностей в пределах рабочего места более 0,2 м2 применяют воздушное душирование. Воздушное душирование представляет собой поток воздуха, имеющий заданные параметры (температуру, скорость движения, иногда влажность), подаваемый непосредственно на рабочее место. Ось воздушного потока направляют на грудь человека горизонтально или под углом 45°. Охлаждающий эффект воздушного душирования зависит от разности температур тела работающего и потока воздуха, а также от скорости обтекания воздухом тела человека.

Эффективность любого теплозащитного устройства оценивается как:

, (2.1)

где Э – эффективность теплозащитного устройства, %;

qпад – тепловой поток падающий на теплозащитное устройство (экран) от источника, Вт/м2;

qпроп – тепловой поток пропущенный теплозащитным устройством (экраном), Вт/м2.

К основным организационным мерам защиты относят:

  • категорирование помещений (установление тепловой характеристики помещения).

Тепловая характеристика помещения устанавливается в зависимости от величины избытков явной теплоты.

Избытки явной теплоты Qяв (теплонапряженность), Вт – тепловые потоки от всех источников (тепло, выделяемое печами, нагретым металлом, электрооборудованием, людьми, отопительными приборами, солнечным нагревом) за вычетом теплопотерь через ограждения при расчетных параметрах наружного воздуха.

Производственные помещения делят на: помещения с незначительными избытками явной теплоты с теплонапряженностью Qяв≤23 Вт/м3=84 кДж/(м3 ч) и помещения с избытками явного тепла с Qяв>23 Вт/м3 (горячие цеха – доменные, сталеплавильные, прокатные и др.).

  • организацию дополнительных перерывов в работе (график перерывов разрабатывается применительно к конкретным условиям работы и в зависимости от тяжести работ, с учетом того, что частые короткие перерывы более эффективны для поддержания работоспособности, чем редкие, но продолжительные).

  • защиту временем во избежание чрезмерного общего перегревания и локального повреждения (ожог). Регламентируют продолжительность периодов непрерывного ИК облучения человека и пауз между ними в соответствии с Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда» [5].

  • организацию мест отдыха (где обеспечивают благоприятные условия);

  • регулярные медосмотры для своевременного лечения.

К индивидуальным средствам относятся специальная одежда, фартуки, обувь, рукавицы. При защите от тепловых излучений спецодежда выполняется воздухо- и влагонепроницаемой (хлопчатобумажная, льняная, грубошерстное сукно). Для защиты головы от излучения применяют дюралевые, фибровые каски, войлочные шляпы; для защиты глаз – очки темные или с прозрачным слоем металла, маски с откидным экраном.

При кратковременных работах в условиях высоких температур (тушении пожаров, ремонте металлургических печей), где температура достигает 80 – 100 °С, большое значение имеет тепловая тренировка. Устойчивость к высоким температурам может быть в некоторой степени повышена лечебно-профилактическими мероприятиями: использование фармакологических средств (дибазола, аскорбиновой кислоты, смеси этих веществ и глюкозы), вдыхание кислорода, аэроионизация.

Для ослабления воздействия тепловых излучений на организм человека устанавливают рациональный питьевой режим – снабжают рабочих горячих цехов подсоленной газированной водой, белково-витаминным напитком и т.п.

Соседние файлы в папке Лабы БЖД