
Лекция8
.docПостановка начально-краевой задачи для уравнений колебаний
Определение. Классическим решением начально-краевой задачи называется функция непрерывная вместе с первыми производными в замкнутом цилиндре, имеющая непрерывные производные второго порядка в открытом цилиндре, удовлетворяющая уравнению, начальным и граничным условиям.
Теорема. Задача может иметь только одно классическое решение
Доказательство.
Пусть
-два различных классических решения
В силу линейности
функция
является решением следующей однородной
начально-краевой задачи
Построим интеграл
Покажем, что интеграл не меняется во времени
Воспользуемся первой формулой Грина
и подставим в предыдущее соотношение
Для первой и для
второй задачи
из начальных условий
Для третьей
Отсюда
из начальных
условий
Итак, для всех
случаев
и учитывая начальные условия
Формальное построение решения
Формула Даламбера
Сделаем замену переменных
Для определения неизвестных функций
последнее равенство можно записать
Вычитая и складывая
И окончательно