Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
катод_укр2011.doc
Скачиваний:
32
Добавлен:
19.04.2015
Размер:
715.78 Кб
Скачать

1.2 Електронна емісія

1.2.1 Термоелектронна емісія

Термоелектронна емісія – це такий вид емісії, при якому додаткова енергія надається емітеру та електронам у вигляді тепла. Термоелектронна емісія отримала найбільш широке застосування в електровакуумних та газорозрядних приладах.

На рис.1.1 по осі ординат відкладена величина енергії . Однак у ряді випадків, наприклад при розгляді електричних полів, у міжелектродному просторі приладів, виявляється більше зручним користуватися поняттям потенційного бар'єра. Тоді по осі ординат відкладається величина потенціалу.

На рис. 1.2 показана функція розподілу електронів по енергіях для металу відповідно до квантової статистики Фермі–Дирака. При К найвища енергія електронів у металі відповідає значенню енергії Фермі. При підвищенні температури тіла найбільш швидкі електрони за рахунок теплової енергії можуть переміститися на більше високі вільні енергетичні рівні. Функція розподілуприК видозмінюється: імовірність заселення енергетичних станів, що лежать вище рівня Еф, стає відмінною від нуля. При кімнатній температурі енергія найбільш швидких електронів зростає на величину , рівну приблизно 0,03 еВ. При підвищенні температури доК збільшення енергії досягає декількох електрон-вольтів. Енергія найбільш швидких електронів при цьому виявляється достатньої для подолання роботи виходу (рис. 1.2). Електрони будуть залишати метал, рухаючись у вакуумі з кінетичною енергією, величина якої виміряється перевищенням їхньої енергії над величиною роботи виходуЕ0.

Рисунок 1.2 - Енергетичний бар'єр на поверхні і функція розподілу Фермі для металу.

Струм з одиниці поверхні катода – питомий струм термоелектронної емісії визначається вираженням (формулою Ричардсона-Дешмона):

, (1.2)

де А/см2град – стала термоелектронної емісії або стала Зоммерфельда; DS – коефіцієнт Шотки, що визначає прозорість потенційного бар’єру для електронів; e, m – заряд та маса електрона, відповідно; h, k – сталі Планка та Больцмана, відповідно.

Експериментальна перевірка формули (1.2) приводить до інших величин цієї постійної: для різних речовин стала може приймати значення від 10 до 300. Данні для основних матеріалів приведені в таб.2.

Таблиця 2

Метал

W

Mo

Ta

Th

Ba

Cs

А0, А*м-2 -2 *106

60

55

60

70

60

162

Е0/k , K*103

52,4

48,1

47,5

39,2

24.5

2,1


З (1.2) видно, що питомий струм емісії залежить від величини роботи виходу і від температури. Для більшості катодів залежність носить експонентний характер. На рис.1.3 показані якісні криві зміни струму емісії від температури для двох катодів площею 0,03см2, але з різною роботою виходу.

Рисунок 1.3 - Залежність струму емісії від температури для катодів.

Термоелектронна емісія – найпоширеніший вид емісії тому термоемітери використовуються майже у всіх електронновакуумних приладах.

1.2.2 Термоелектронна емісія при зовнішньому електростатичному полі

Ми розглянули явище термоелектронної емісії в припущенні, що електричне поле у вакуумі відсутнє.

У більшості електронних приладів емітер або катод перебуває поблизу інших електродів, потенціал яких у загальному випадку відмінний від нуля. Тому електрони, залишаючи поверхню катода, попадають у зовнішнє електричне поле. Крива зміни енергії на поверхні емітера, а отже і умови емісії електронів при цьому відрізняються від розглянутих вище випадків.

На рис.1.4 а показана зміна енергії на поверхні катоду при наявності зовнішнього гальмівного електричного поля. Результуюча крива 3, отримана при додаванні кривої 1 і 2, визначає зміну потенціалу між емітером і електродом з потенціалом -. Електрон, що має власну енергієюЕф, при видаленні від катода на відстань повинен виконати роботу. Інакше кажучи, він може досягти електродутільки в тому випадку, якщо одержить додаткову енергію.

Рисунок 1.4 - Зміна енергетичного бар'єру на поверхні металу при зовнішньому електричному полі: а - при гальмівному полі; б - при прискорювальному полі.

Якщо електроду надати позитивний потенціал, крива зміни енергії приймає, вид, показаний на рис.1.4б. При цьому енергетичний бар'єр на поверхні катода зменшується на величину. Обчислення цієї величини показує, що вона залежить від напруженості зовнішнього поля згідно

(1.3)

де – напруженість електричного поля,і– діелектричні проникність середовища та діелектрична стала, відповідно. З урахуванням зовнішнього електростатичного поля, питомий струм термоелектронної емісії можна записати у вигляді

. (1.4)

Збільшення струму емісії в результаті впливу зовнішнього прискорювального електростатичного поля називається ефектом Шоттки.