Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
1507
Добавлен:
19.04.2015
Размер:
4.79 Mб
Скачать

1. Формирователи опорного напряжения

Стабилитроны.Серийно выпускаемые стабилитроны име­ют разные вольт-амперные характеристики. Максимальной крутиз­ной обладают стабилитроны с опорным напряжением 7 — 8 В. Тем­пературный коэффициент напряжения (ТКН) стабилитронов с на­пряжением стабилизации менее 5 В имеет отрицательное значение. Для опорного напряжения около 5,4 В при токе 7 мА ТКН равен нулю. Стабилитроны с опорным напряжением более б В имеют по­ложительный ТКН.

Минимальным внутренним дифференциальным сопротивлением обладают диоды с опорным напряжением 7 — 8 В. Все остальные диоды имеют большое внутреннее сопротивление. Это сопротивле­ние сильно зависит от тока, протекающего через диод. Рабочим то­ком стабилитронов следует считать ток более 3 мА. Ряд графиф-ских зависимостей, характеризующих работу стабилитронов, приве­ден на рис. 16.1.

Управляемый стабилитрон.В обычных стабилитронах при из­менении протекающего тока в некоторых .пределах меняется опор­ное напряжениеЕ0. В приведенной схеме (рис. 16.2,а) ток, проте­кающий через стабилитрон, контролируется ОУ. Если ОУ не может обеспечить требуемый ток нагрузки, то на выход ОУ целесообраз­но включить транзистор (рис. 162, б). Транзистор полезен и в слу­чае протекания значительного тока через стабилитрон, например, более 5 — 10 мА (при этом стабилитрон обладает меньшим внутрен­ним сопротивлением). Выходное напряжение определяется выра­жениемU=EO/[1— R3/(R2+R3)]. При изменении соотношения между сопротивлениямиR2 иR3 можно регулировать выходное напряже­ние в широких пределах. Временной дрейф выходного напряжения не превышает 1 мВ, температурный дрейф в диапазоне от 0 до 85°С не превышает 1 мВ. Выходное сопротивление при изменении тока нагрузки до 20 мА составляет 0,025 Ом. Общая нестабильность выходного напряжения не превышает 0,05 %.

Рис. 16.1

Рис. 16.2

Стабилизатор напряжения на светодиоде.С помощью светоди-одов можно получить стабилизатор с индикацией (рис. 163). Ин­тенсивность свечения диода зависит от протекающегоччерез него тока. Этот ток определяется сопротивлением резистораR1.

Рис. 16.3

Дифференциальное, сопротивление прямой ветви светодиода АЛ 108 равно 0,3 — 12 Ом. При обратном напряжении пробой насту­пает при напряжении для АЛ 108 — 104-20 В и АЛ 109 — 5-М О В. Температурный коэффициент изменения прямого напряжения равен приблизительно 0,12 % на градус. Прямое напряжение при токе 100 мА для АЛ108 равно 1,15 — 1,25 В, а для АЛ109 — 1,0-М,15 В, емкость переходов равна соответственно 130 — 300 пФ и 200 — 400 пФ.

Схема термостабильного опорного напря­жения.Схема (рис. 16.4) позволяет получить стабильное напряжение в широком диапазоне температур. Опорное напряжение, имеющее нулевой ТКН, устанавливается потенциомет­ром:U0п= Uд+ТКНд/ТКНстUст, гдеUд— па­дение напряжения на диоде;Uст— опорное напряжение стабилитрона, ТКНДи ТКНст— температурные коэффициенты напряжения ди­ода и стабилитрона. Если вместо одного диодаVD2 включить два кремниевых диода, то опор­ное напряжение увеличится в два раза.

Рис. 16.4 Рис. 16.5

Низковольтный стабилитрон.Стабилитрон (рис. 16.5) имеет опорное напряжение 0,65 В для кремниевых и 0,3 В для германие­вых транзисторов. Внутреннее сопротивление стабилитрона менее 5 Ом. Стабилитрон обладает коэффициентом стабилизации 103. Из­менение выходного напряжения при изменении температуры состав­ляет 2 мВ/град или 1 % на градус для германиевых транзисторов и 0,3 % на градус для кремниевых транзисторов.

Полевой транзистор в качестве низковольтного стабилитрона.При включении резистора в цепь истока полевого транзистора воз­никает напряжение ОС. Это напряжение слабо зависит от питаю­щего напряжения. Напряжение ОС определяется потенциалом от­сечки полевого транзистора. Схема с одним транзистором (рис. 16.6, а) обеспечивает внутреннее сопротивление приблизи­тельно 30 Ом, а с двумя транзисторами (рис. 166,б) имеет вну­треннее сопротивление менее 5 Ом. Кроме того, схема с двумя транзисторами обладает и большим коэффициентом стабилизации (более 103). Температурная стабилизация может быть обеспечена, если режим работы транзистора вывести в термостабильную точку, а также применить терморезисторы в цепи истока.

Увеличение максимального тока стабилитрона.Устройство (рис. 16 7) служит для стабилизации напряжения в цепях, в которых ток нагрузки превышает максимальный ток стабилитрона Когда напряжение на коллекторе транзистора превышает опорный уровень стабилитрона, начинает протекать базовый ток транзисто­ра, который вh21Эраз меньше коллекторного тока. В результате основной ток резистораR1 будет протекать через транзистор Схе­ма выполняет функции стабилитрона с увеличенным максимально допустимым током. Внутреннее сопротивление устройства составля­ет 0,6 Ом.

Рис. 16.6

Рис. 16.7

Схема с отрицательным коэффициентом стабилизации. Схема формирования опорного напряжения (рис. 16.8,а) имеет отрица­тельный коэффициент стабилизации K=ДE/ДU. Этот коэффициент можно регулировать изменением сопротивлений резисторовR1 иR2.

Зависимость этих параметров выражается формулой К=K1/K2. Графическая интерпретация зависимостей представлена на рис 16.8,б.

Схема с регулируемым коэффициентом стабилизации.Схема формирования опорного напряжения (рис. 16.9, а) обладает как положительным, так и отрицательным коэффициентами стабилиза­ции. Знак коэффициента стабилизации определяется отношением сопротивлений резисторов R2/R4. При R4<R2.коэффициент стабили­зации имеет положительный знак, а дляR4>R2 — отрицательный. Зависимость изменения выходного напряжения от входного при различных сопротивленияхR4 представлена на рис. 16.9,б.

Рис. 16.8

Рис. 16.9

Рис. 16.10

Схема низковольтного опорного источника.Источник опорного напряжения (рис. 16.10, а) построен на интегральной микросхеме К101КТ1. С помощью этой схемы можно получить стабильное на­пряжение 0,7 В с внутренним сопротивлением менее 10 Ом. Выход­ное напряжение зависит от температуры с коэффициентом 2 мВ/град. Коэффициент стабилизации равен приблизительно 5-103. На рдс. 16.10,б представлена зависимость напряжения стабилиза­ции от подводимого напряжения.