- •Радиоэлектронные устройства (справочник) Издательство «Радио и связь», 1984 предисловие
- •Глава 1 микросхемы и схемы их включения
- •1. Микросхемы серии к140
- •2. Микросхемы серии к153
- •3. Микросхемы серии k154
- •4. Микросхемы серии к157
- •5. Микросхемы серии к544
- •6. Микросхемы серии к574уд1
- •Глава 2 эквиваленты радиоэлементов
- •1. Резисторные мосты
- •2. Потенциометры
- •3. Аттенюаторы
- •4. Эквиваленты конденсаторов
- •5. Эквиваленты диодов и транзисторов
- •6. Параметры контура
- •7. Преобразователи сопротивлений
- •8. Преобразователи тока
- •9. Преобразователи «напряжение — ток»
- •10. Каскодное включение
- •Глава 3 двухполюсники с отрицательным сопротивлением
- •I. Схемы с характеристикой s-вида
- •2. Схемы с характеристикой n-вида
- •Глава 4 усилители
- •I. Управление коэффициентом усиления
- •2. Сдвоенные оу
- •3. Расширение возможностей оу
- •4. Усилители мощности
- •5. Предусилителй с управляемыми параметрами
- •6. Усилители с непосредственными связями на транзисторах
- •7. Усилители с частотно-зависимым коэффициентом усиления
- •8. Электрометрические усилители
- •9. Усилители с непосредственными связями
- •10. Многокаскадные усилители
- •II. Кабельные усилители
- •12. Мостовые усилители
- •13. Измерительные усилители
- •14. Чувствительные упч
- •15. Полосовые усилители
- •16. Усилители с ару
- •Глава 5 фильтры
- •1. Фильтры с полосой пропускания до 1 кГц
- •2. Многозвенные фильтры
- •3. Управляемые фильтры
- •4. Фильтры на микросхемах
- •5. Фильтры на транзисторах
- •6. Фильтры с повторителями напряжения
- •7. Фильтры на усилителях
- •8. Полосовые фильтры
- •9. Перестраиваемые фильтры
- •Глава 6 модуляторы постоянного тока
- •1. Переключатели на микросхемах
- •2. Переключатели на биполярных транзисторах
- •3. Переключатели на полевых транзисторах
- •4. Переключатели со схемой управления
- •Глава 7 модуляторы переменного тока
- •1. Модуляторы на полевых транзисторах
- •2. Модуляторы гармонических колебаний
- •3. Модуляторы со схемой управления
- •4. Модуляторы вч колебаний на биполярных транзисторах
- •5. Модуляторы на оу
- •Глава 8 детекторы
- •1. Двухполупериодные детекторы
- •2. Детекторы вч сигналов
- •3. Детекторы с оу
- •4. Детекторы с нелинейными передаточными характеристиками
- •5. Частотные детекторы
- •6. Фазовые детекторы
- •7. Однотактные детекторы
- •8. Двухтактные детекторы
- •Глава 9 генераторы гармонических колебаний
- •1. Однокаскадные генераторы
- •2. Многодиапазонные генераторы
- •3. Генераторы на микросхемах
- •4. Генераторы многофазных сигналов
- •5. Генераторы с управляемой амплитудой сигнала
- •6. Многозвенные генераторы
- •Глава 10 импульсные генераторы
- •1. Генераторы на транзисторах
- •2. Генераторы на микросхемах
- •Глава 11 генераторы сигналов специальной формы
- •1. Импульсные генераторы
- •2. Генераторы сигнала пилообразной формы
- •3. Управляемые генераторы
- •4. Генераторы на оу
- •5. Генераторы сложных сигналов
- •Глава 12 управляемые импульсные генераторы
- •1. Двухкаскадные релаксаторы
- •2. Трехкаскадные релаксаторы
- •3. Многокаскадные релаксаторы
- •4. Релаксаторы на логических элементах
- •5. Преобразователи на оу и компараторах
- •6. Счетчики импульсов
- •Глава 13 компараторы, сравнивающие устройства, ограничители
- •1. Ограничители
- •2. Преобразователи формы сигнала
- •3. Пороговые устройства
- •Глава 14 преобразователи частоты
- •1. Преобразователи на транзисторах
- •2. Преобразователи на микросхемах
- •3. Умножители частоты
- •Глава 15 преобразователи сигналов
- •1. Фазочувствительные схемы
- •2. Схемы формирования абсолютного значения
- •3. Умножители
- •4. Аппроксиматоры
- •5. Фазосдвитающие схемы
- •6. Интеграторы, дифференциаторы
- •7. Преобразователи сигналов
- •Глава 16 стабилизаторы напряжения и тока
- •1. Формирователи опорного напряжения
- •2. Маломощные транзисторные стабилизаторы
- •3. Микросхемные стабилизаторы
- •4. Мощные стабилизаторы
- •5. Стабилизаторы с защитой
- •6. Стабилизаторы с оу
- •Глава 17 преобразователи напряжения
- •1. Выпрямительные мосты
- •2. Транзисторные преобразователи
- •3. Двухкаскадные преобразователи
- •5. Умножители напряжения
- •Приложение. Указатель схем включения микросхем и их зарубежные аналоги
- •Глава I. Микросхемы и схемы их включения
- •Глава 2. Эквиваленты радиоэлементов
- •Глава 3. Двухполюсники с отрицательным сопротивлением
- •Глава 4. Усилители
- •Глава 5. Фильтры
- •Редакция литературы по электронной технике
- •Радиоэлектронные устройства (справочник)
3. Пороговые устройства
Многопороговое устройство. Для формирования сдвинутых во времени сигналов применяется устройство (рис. 13.24) с десятью пороговыми уровнями. Уровни открывания устанавливаются диодной цепочкой. Дискретность уровней равна 1 В. На входе существует переменный сигнал. Форма сигнала должна быть нарастающей (синусоидальная, треугольной формы). С увеличением входного сигнала вначале открывается транзисторомVT10, затемVT9 и т. д.
Устройство с малой петлей гистерезиса.В схеме сравнения двух напряжений (рис. 13.25) применяется запаздывающая ОС. Эта связь позволяет уменьшить гистерезис передаточной характеристики релаксационной схемы. На входе устройства стоит дифференциальный усилитель, выходной сигнал которого подается на формирователь, построенный на транзисторах с разными типами проводимости и охваченным ПОС через цепочкуR2C1. Кроме того, с коллектора транзистораVT2 подается ООС через цепочкуR3, С2. Отрицательная обратная связь через времяr=RiCz компенсирует действие ПОС. При полной конденсации получается безгистерезисное устройство сравнения. Если ООС опережает действие ПОС, то в схеме возникают колебания. Для указанных на схеме номиналов элементов устройство имеет время срабатывания 30 — 40 не, время отпускания 80 — 100 не, диапазон сравниваемых напряжений от — 3 до +4,5 В, ширина гистерезисной петли менее 0,4 мВ. Порог срабатывания схемы можно регулировать резисторомR1 в пределах от — 15 до +15 мВ. Стабильность уровня срабатывания не хуже 40 — 50 мкВ/град.

Рис. 13.24
Преобразователь гармонического сигнала в прямоугольный.Преобразование сигнала (рис. 13.26) осуществляется за счет насыщения транзисторов. Положительная полуволна входного сигнала шунтируется диодоиVD1. Отрицательная полуволна открывает транзисторVT1. Коллекторный ток этого транзистора открывает транзисторVT2. Отрицательное напряжение 5 В проходит через диодыVD2 иVD3 и подается на выход. Когда на входе будет положительная полуволна, транзисторVT2 закрыт. Положительное напряжение на коллекторе откроет транзисторVT3. В эмиттерной цепи этого транзистора появляется положительное напряжение.

Рис. 13.25
Выходное сопротивление устройства для однополярного сигнала менее 500 Ом, а для двухполярного — 20 кОм; частота входного сигнала 1 кГц, амплитуда 5 В.
Ограничитель-дискриминатор.Устройство (рис. 13.27) имеет регулируемый порог ограничения. Входной сигнал с амплитудой 1 В может быть разделен на две составляющие. При установке на входе 10 напряжения 1 В на выход проходит сигнал положительной полярности. Установкой на входе10 напряжения — 1 В на выходе формируется сигнал отрицательной полярности.

Рис. 13.26

Рис. 13.27

Рис. 13.28

Рис. 13.29
Разделитель сигналов.Устройство (рис. 13.28) позволяет разделить положительные и отрицательные полуволны сигнала при сохранении уровня постоянной составляющей. Отрицательная полярность входного сигнала открывает транзисторVT1 и тем самым эта полуволна срезается на выходе. Напротив, положительная полярность сигнала закрывает транзисторVT1, она проходит на выход схемы. Вторая половина схемы работает аналогичным образом и пропускает отрицательную полуволну. Чтобы избежать падения напряжения на резисторахR1 иR2, сопротивление нагрузки должно иметь большое значение. РезисторR8 является коллектерной нагрузкой для обоих транзисторов. Граничная частота определяется емкостью конденсаторов С1 иС2. Для указанных номиналов частота равняется 5 кГц.
Пороговое устройство.В пороговом устройстве (рис. 13.29) используются элементы ИЛИ/ИЛИ — НЕ. Через резисторR2 в схему вводится ПОС, а резисторR1 развязывает источник сигнала от входа схемы. В зависимости от отношения сопротивлений резисторовR1/R2 схема обладает различной шириной тистерезисной петли. Кроме указанной микросхемы, в схеме могут применяться интегральные микросхемы серии К137 и К138.
Сравнивающее устройство. СравнивающееyqTpoflcTBO (рис. 13.30) вырабатывает выходной сигнал, длительность которого равна длительности превышения одного входного сигнала над другим. Дифференциальные усилители включены последовательно один за другим и работают в режиме ограничения сигнала, рассогласования. Количество включенных последовательных усилителей определяет ширину зоны нечувствительности устройства.

Рис. 13.30

Рис 13.31
При изменении напряжения питания на ±10 % ширина зоны нечувствительности не более 1 мВ Дрейф порога срабатывания не более 15 мкВ/град в диапазоне температур 20 — 70°С Максимальная амплитуда входного сигнала ±2 В, диапазон рабочих частот О — 500 кГц Выходной сигнат более 4 В
Компараторы на микросхемах К133ЛАЗ. Компаратор (рис 13.31, а) построен на одном элементе 2И — НЕ интегральной микросхемы К133ЛАЗ Порог срабатывания микросхемы зависит от отрицательного напряжения на выводе 7 Схема одного элемента 2И — НЕ, входящего в К133ЛАЗ, и передаточная характеристика схемы рис 13.31, с при различных пороговых напряжениях показана на рис 13.31,в При нулевом напряжении на входе компаратор переключается с уровняЕ= — 1,25 В Напряжение срабатывания компаратора менее 100 мВ Время включения компаратора 40 не, а выключения — 60 не Поскольку в микросхеме имеются четыре логических элемента, то ток, протекающий через контакт 7, будет являться суммарным Для всех четырех логических элементов уровень срабатывания одинаков
Компаратор на рис 13.31, б построен на четырех логических элементах Все элементы находятся в режиме, близком к линейному Это достигнуто введением резисторовR3— R6 Передаточная характеристика элемента 2И — НЕ в зависимости от сопротивления на его входе показана на рис 1331,г Регулировкой входного сопротивления можно управлять напряжением на выходе элемента.

Рис 13.32
Входной сигнал подается в точку, где напряжение равно нулю Этот уровень устанавливается резистором R2 Время включения и выключения компаратора определяется временем переключения одного элемента Один элемент имеет время задержки включения не более 18 не, а время задержки выключения не более 36 не Чувствительность схемы составляет 1 — 2 мВ
Компаратор на логических элементах.Компаратор напряжения построен на двух логических элементах микросхемы К133ЛАЗ На рис 1332,а изображена схема, в которой сравниваются два напряжения НаВход 1 подается эталонное напряжение, а наВход 2 — исследуемое Чувствительность схемы равна 5 мВ Если сигнал в точке соединения резисторовR1—R3 меньше 3 мВ, то на выходе существует постоян шй уровень 2 В При сигнале с напряжением 4 мВ формируется отрицатечьный импучьс (рис 1332, в), а сигнал с напряжением 5 мВ вызывает появление положительного импульса
Для управления порогом срабатывания компаратора (рис 1332, б) на вход 2 элементаDD1 подается напряжение Это напряжение определяет порог срабатывания схемы как для положительных, так и лля отрицательных попярностей входного сигнала Двухполяоныи выходной сигнал формируется от гармонического входного сигнала с амплитудой 4 мВ Точная настройка схемы позволяет увеличить чувствительность до 1 мВ Однако в этом случае выходной сигнал меняется от +2 до 0 В
Дифференциальная схема компаратора. Компаратор (рис 1333) построен по дифференциальной схеме Чувствительность схемы составляет 1 мВ при времени переключения менее 50 не Высокое быстродействие и большая чувствительность схемы достигнуты за счет того, что все интегральные микросхемы находятся в режиме, близком к линейному, что обеспечивается правильным выбором сопротивлении резисторов Порог срабатывания можно регулировать в пределах ±100 мВ при подаче напряжения на один из входов Кроме того, управлять порогом срабатывания можно и с помощью потенциометраR6 В этом случае пределы регулировки расширяются до 0,5 В Можно и дальше увеличивать порог срабатывания схемы, если уменьшать сопротивление резистораR2. Предельным уровнем является напряжение 1,4 В выводах2, 4 (при дальней шем повышении напряжения чувствительность схемы резко падает). Интегральные микросхемы компараторов. Микросхемы К521СА1 и К521СА2 являются компараторами напряжения (рис. 13.34,а, б). Микросхема К521СА1 — сдвоенный компаратор. Стробирование по каждому каналу позволяет поочередно опрашивать оба компаратора. Амплитуда стробнрующего импульса 6 В. По электрическим параметрам компараторы подобны. Коэффициент усиления компараторов меняется от температуры (рис. 13.34,в) Изменение входного тока от температуры показано на рис. 13.34, г. Быстродействие компараторов зависит от амплитуды входного сигнала. Эпюры сигналов включения и выключения компаратора показаны на рис. 13.34,д, е. Электрические схемы включения приведены на рис. 13.34,ж, з. Максимальная чувствительность компаратора достигается, когда напряжение на резистореR2(R3) равно 100 мВ. Высокий логический уровень на выходе соответствует напряжению 2,5 — 5 В, а низкий — напряжению 0,3 В


Рис 13.33 Рис. 13.34
