- •Радиоэлектронные устройства (справочник) Издательство «Радио и связь», 1984 предисловие
- •Глава 1 микросхемы и схемы их включения
- •1. Микросхемы серии к140
- •2. Микросхемы серии к153
- •3. Микросхемы серии k154
- •4. Микросхемы серии к157
- •5. Микросхемы серии к544
- •6. Микросхемы серии к574уд1
- •Глава 2 эквиваленты радиоэлементов
- •1. Резисторные мосты
- •2. Потенциометры
- •3. Аттенюаторы
- •4. Эквиваленты конденсаторов
- •5. Эквиваленты диодов и транзисторов
- •6. Параметры контура
- •7. Преобразователи сопротивлений
- •8. Преобразователи тока
- •9. Преобразователи «напряжение — ток»
- •10. Каскодное включение
- •Глава 3 двухполюсники с отрицательным сопротивлением
- •I. Схемы с характеристикой s-вида
- •2. Схемы с характеристикой n-вида
- •Глава 4 усилители
- •I. Управление коэффициентом усиления
- •2. Сдвоенные оу
- •3. Расширение возможностей оу
- •4. Усилители мощности
- •5. Предусилителй с управляемыми параметрами
- •6. Усилители с непосредственными связями на транзисторах
- •7. Усилители с частотно-зависимым коэффициентом усиления
- •8. Электрометрические усилители
- •9. Усилители с непосредственными связями
- •10. Многокаскадные усилители
- •II. Кабельные усилители
- •12. Мостовые усилители
- •13. Измерительные усилители
- •14. Чувствительные упч
- •15. Полосовые усилители
- •16. Усилители с ару
- •Глава 5 фильтры
- •1. Фильтры с полосой пропускания до 1 кГц
- •2. Многозвенные фильтры
- •3. Управляемые фильтры
- •4. Фильтры на микросхемах
- •5. Фильтры на транзисторах
- •6. Фильтры с повторителями напряжения
- •7. Фильтры на усилителях
- •8. Полосовые фильтры
- •9. Перестраиваемые фильтры
- •Глава 6 модуляторы постоянного тока
- •1. Переключатели на микросхемах
- •2. Переключатели на биполярных транзисторах
- •3. Переключатели на полевых транзисторах
- •4. Переключатели со схемой управления
- •Глава 7 модуляторы переменного тока
- •1. Модуляторы на полевых транзисторах
- •2. Модуляторы гармонических колебаний
- •3. Модуляторы со схемой управления
- •4. Модуляторы вч колебаний на биполярных транзисторах
- •5. Модуляторы на оу
- •Глава 8 детекторы
- •1. Двухполупериодные детекторы
- •2. Детекторы вч сигналов
- •3. Детекторы с оу
- •4. Детекторы с нелинейными передаточными характеристиками
- •5. Частотные детекторы
- •6. Фазовые детекторы
- •7. Однотактные детекторы
- •8. Двухтактные детекторы
- •Глава 9 генераторы гармонических колебаний
- •1. Однокаскадные генераторы
- •2. Многодиапазонные генераторы
- •3. Генераторы на микросхемах
- •4. Генераторы многофазных сигналов
- •5. Генераторы с управляемой амплитудой сигнала
- •6. Многозвенные генераторы
- •Глава 10 импульсные генераторы
- •1. Генераторы на транзисторах
- •2. Генераторы на микросхемах
- •Глава 11 генераторы сигналов специальной формы
- •1. Импульсные генераторы
- •2. Генераторы сигнала пилообразной формы
- •3. Управляемые генераторы
- •4. Генераторы на оу
- •5. Генераторы сложных сигналов
- •Глава 12 управляемые импульсные генераторы
- •1. Двухкаскадные релаксаторы
- •2. Трехкаскадные релаксаторы
- •3. Многокаскадные релаксаторы
- •4. Релаксаторы на логических элементах
- •5. Преобразователи на оу и компараторах
- •6. Счетчики импульсов
- •Глава 13 компараторы, сравнивающие устройства, ограничители
- •1. Ограничители
- •2. Преобразователи формы сигнала
- •3. Пороговые устройства
- •Глава 14 преобразователи частоты
- •1. Преобразователи на транзисторах
- •2. Преобразователи на микросхемах
- •3. Умножители частоты
- •Глава 15 преобразователи сигналов
- •1. Фазочувствительные схемы
- •2. Схемы формирования абсолютного значения
- •3. Умножители
- •4. Аппроксиматоры
- •5. Фазосдвитающие схемы
- •6. Интеграторы, дифференциаторы
- •7. Преобразователи сигналов
- •Глава 16 стабилизаторы напряжения и тока
- •1. Формирователи опорного напряжения
- •2. Маломощные транзисторные стабилизаторы
- •3. Микросхемные стабилизаторы
- •4. Мощные стабилизаторы
- •5. Стабилизаторы с защитой
- •6. Стабилизаторы с оу
- •Глава 17 преобразователи напряжения
- •1. Выпрямительные мосты
- •2. Транзисторные преобразователи
- •3. Двухкаскадные преобразователи
- •5. Умножители напряжения
- •Приложение. Указатель схем включения микросхем и их зарубежные аналоги
- •Глава I. Микросхемы и схемы их включения
- •Глава 2. Эквиваленты радиоэлементов
- •Глава 3. Двухполюсники с отрицательным сопротивлением
- •Глава 4. Усилители
- •Глава 5. Фильтры
- •Редакция литературы по электронной технике
- •Радиоэлектронные устройства (справочник)
3. Многокаскадные релаксаторы
Формирователь коротких импульсов.Устройство (рис. 12.23) предназначено для получения коротких импульсов на низкоомной нагрузке. Оно запускается сигналом любой формы и, в частности, гармоническим. В основу формирователя положен усилитель с ПОС, снимаемой с нелинейной нагрузки. Можно построить две схемы: для получения положительной и отрицательной полярности импульсов.
В начальном состоянии транзисторы VT1 — VT4 закрыты. Входной сигнал положительной полярности открывает транзисторыVT1 иVT4. Эмиттерные токи этих транзисторов начинают заряжать конденсаторС2. Одновременно на базы транзисторовVT2 иVT4 поступает сигнал с коллектораVT1, вызывающий быстрый рост зарядного тока конденсатораС2. По мере заряда этого конденсатора напряжение на нем возрастает и в результате приводит к закрыванию транзисторовVT1 иVT4. На резистореR2 формируется короткий импульс. После окончания формирования импульса открываются транзисторыVT2 иVT3 и эмиттерными токами разряжают конденсаторС2. Для уменьшения длительности выходного импульса ПОС снимается с диодовVD1 иVD2, которые представляют значительное сопротивление лишь в первый момент включения транзисторов. Далее сопротивление диодов уменьшается и тем самым уменьшается и ПОС. Уменьшение связи ведет к закрыванию транзисторовVT1 иVT4.
Формирователь работает от входных сигналов на частотах от 5 кГц до 25 МГц. Выходной импульс с амплитудой от 5 до 10 В имеет длительность 10нс, фронт — 5 не и срез — 3 не.
Мультивибратор с токозадаю-щим элементом. В основу преобразователя (рис. 12.24) положен обыкновенный мультивибратор, в котором вместо базовых резисторов включены транзисторы VT3 иVT4. Эти транзисторы работают в режиме генераторов тока. Коллекторный ток транзисторов определяется напряжением на базе и резистором в эмиттере. Изменяя напряжение на базе, можно менять ток разряда конденсаторовС1 иС2 и тем самым менять частоту мультивибраторов. Диапазон изменения входного напряжения лежит в пределах от — 5 до +5 В при сохранении линейной зависимости частоты следования импульсов от входного напряжения. Частота следования импульсов при нулевом входном напряжении и коэффициенте преобразования определяется конденсаторамиС1 иС2. Для С1 = С2 = С,f=35С К., где С — в микрофарадах, аК — в мегагерцах на вольт.


Рис. 12.23 Рис. 12.24
Управляемый мультивибратор с большим динамическим диапазоном.Для перекрытия большого динамического диапазона по частоте в мультивибраторе (рис. 12.25) заряд конденсаторов ОС осуществляется через генератор тока. Зарядный ток определяется управляющим напряжением и резисторамиR2 иR4. Минимально возможный зарядный ток определяется утечкой транзисторовVT2 иVT3, максимальный ток существует при управляющем напряжении, равном напряжению питания. Если при нулевом управляющем напряжении частота мультивибратора меньше 1 Гц, то при максимальном напряжении частота будет больше 10 кГц.
В некоторый момент времени транзистор VT1 откроется, а транзисторVT6 закроется. Отрицательный перепад напряжения в коллекторе транзистораVT1 пройдет на базу транзистораVT3 и закроет его. Начинается процесс заряда конденсатора С1 коллекторным током транзистораVT2. Напряжение на базе транзистораVT3 будет линейно увеличиваться. В определенный момент, когда напряжение на конденсатореС1 будет равно напряжению источника питания, транзисторVT3 откроется. За этим последует открывание транзистораVT6. Отрицательный перепад напряжения в коллекторе этого транзистора закроет транзисторVT4. Будет закрыт и транзисторVT1. Схема перейдет в новое состояние. Начнется новый полупериод работы мультивибратора.

Рис. 12.25

Рис. 12.26
Формирователь высоковольтных импульсов с ОС.Устройство (рис. 12.26) формирует на выходе высоковольтные импульсы от низковольтного источника. Выходной сигнал формируется на конденсаторах, которые включаются последовательно с открыванием управляющих транзисторов. Заряжаются конденсаторы параллельными цепями. Когда транзисторыVT1—VT3 закрыты, то токи, протекающие через диодыVD1—VD3, открывают транзисторыVT4, VT6 иVT8. КонденсаторС1 заряжается до напряжения 100 В через диодыVD4 иVD7 и открытый транзисторVT4, конденсаторС2 — черезVD5, VD6 иVD8, аСЗ — черезVD6, VT8 иVD9.
С приходом на базу транзистора VT1 импульса положительной полярности в коллекторе этого транзистора появляется нулевой потенциал. ДиодVD1 и транзисторVT4 закрываются. Напряжение на конденсатореС1 будет приложено минусом к эмиттеру транзистораVT5. Этот транзистор откроется. Параллельно диодуVD4 будет включен конденсаторС1.
Поскольку транзистор VT5 открыт, то питающее напряжение 100 В подается через резисторR8 на диодVD2. Диод закрывается. Вслед за этим начинается процесс подключения напряжения конденсатораС2 к выходу. В результате конденсаторыС1 — СЗ будут включены последовательно. На выходе появится импульсный сигнал с амплитудой 300 В.

Рис. 12.27
В этом режиме работы достаточно подать управляющее напряжение на базу транзистора VT1; при этом все каскады срабатывают одновременно. В схеме возможен и другой режим работы, когда управляющие сигналы поочередно подаются в базы транзисторовVT1—VT3. В этом случае с каждым управляющим сигналом выходное напряжение увеличивается на 100 В. Время нарастания выходного импульса меньше 1 мс.
Формирователь наносекундных импульсов. Основным узлом генератора (рис. 12.27) являются последовательно включенные транзисторы VT1—VT3, которые работают в режиме лавинного пробоя. В исходном состоянии эти транзисторы закрыты и конденсатор заряжен до напряжения 450 В. От задающего мультивибратора, собранного на транзисторахVT4 иVT5, импульсы положительной полярности поступают на базу транзистораVT3. Открывание транзистораVT3 вызывает пробой транзисторовVT1 иVT2. КонденсаторС1 разряжается через резисторR6. Если к этому резистору не подключена линия задержки, то на выходе формируется импульс колоколообразной формы с длительностью 20 не и амплитудой 150 В При подключении линии задержки формируется двухпчэляр-ный импульс отрицательная полуволна которого образована отражением сигнала в кабеле. Выходной сигнал по форме близок к одному периоду синусоиды.

Рис. 12.28
Линия задержки. Линия (рис. 12.28) состоит из трех одинаковых каскадов. Входной сигнал через эмиттерный повторительVT1 подается на первый каскад. ТранзисторVT2 закрыт. Напряжение на коллекторе транзистораVT5 медленно возрастает. Когда это напряжение достигнет 5 В, транзисторVT6 открывается. Порог открывания транзистора устанавливается делителемR3, R4. Происходит открывание транзистораVT2. Положительное напряжение на коллекторе этого транзистора откроет транзисторVT7. Коллекторный ток транзистораVT7 уменьшает пороговый уровень. Происходит лавинообразный процесс. Все три транзистора находятся в проводящем состоянии. С возникновением напряжения в т.3 начинает работать второй каскад. Время задержки включения каскада определяется постоянной времени т = Л25Э Я2С(, где Й2|Э — коэффициент передачи тока транзистораVT5.
