- •Радиоэлектронные устройства (справочник) Издательство «Радио и связь», 1984 предисловие
- •Глава 1 микросхемы и схемы их включения
- •1. Микросхемы серии к140
- •2. Микросхемы серии к153
- •3. Микросхемы серии k154
- •4. Микросхемы серии к157
- •5. Микросхемы серии к544
- •6. Микросхемы серии к574уд1
- •Глава 2 эквиваленты радиоэлементов
- •1. Резисторные мосты
- •2. Потенциометры
- •3. Аттенюаторы
- •4. Эквиваленты конденсаторов
- •5. Эквиваленты диодов и транзисторов
- •6. Параметры контура
- •7. Преобразователи сопротивлений
- •8. Преобразователи тока
- •9. Преобразователи «напряжение — ток»
- •10. Каскодное включение
- •Глава 3 двухполюсники с отрицательным сопротивлением
- •I. Схемы с характеристикой s-вида
- •2. Схемы с характеристикой n-вида
- •Глава 4 усилители
- •I. Управление коэффициентом усиления
- •2. Сдвоенные оу
- •3. Расширение возможностей оу
- •4. Усилители мощности
- •5. Предусилителй с управляемыми параметрами
- •6. Усилители с непосредственными связями на транзисторах
- •7. Усилители с частотно-зависимым коэффициентом усиления
- •8. Электрометрические усилители
- •9. Усилители с непосредственными связями
- •10. Многокаскадные усилители
- •II. Кабельные усилители
- •12. Мостовые усилители
- •13. Измерительные усилители
- •14. Чувствительные упч
- •15. Полосовые усилители
- •16. Усилители с ару
- •Глава 5 фильтры
- •1. Фильтры с полосой пропускания до 1 кГц
- •2. Многозвенные фильтры
- •3. Управляемые фильтры
- •4. Фильтры на микросхемах
- •5. Фильтры на транзисторах
- •6. Фильтры с повторителями напряжения
- •7. Фильтры на усилителях
- •8. Полосовые фильтры
- •9. Перестраиваемые фильтры
- •Глава 6 модуляторы постоянного тока
- •1. Переключатели на микросхемах
- •2. Переключатели на биполярных транзисторах
- •3. Переключатели на полевых транзисторах
- •4. Переключатели со схемой управления
- •Глава 7 модуляторы переменного тока
- •1. Модуляторы на полевых транзисторах
- •2. Модуляторы гармонических колебаний
- •3. Модуляторы со схемой управления
- •4. Модуляторы вч колебаний на биполярных транзисторах
- •5. Модуляторы на оу
- •Глава 8 детекторы
- •1. Двухполупериодные детекторы
- •2. Детекторы вч сигналов
- •3. Детекторы с оу
- •4. Детекторы с нелинейными передаточными характеристиками
- •5. Частотные детекторы
- •6. Фазовые детекторы
- •7. Однотактные детекторы
- •8. Двухтактные детекторы
- •Глава 9 генераторы гармонических колебаний
- •1. Однокаскадные генераторы
- •2. Многодиапазонные генераторы
- •3. Генераторы на микросхемах
- •4. Генераторы многофазных сигналов
- •5. Генераторы с управляемой амплитудой сигнала
- •6. Многозвенные генераторы
- •Глава 10 импульсные генераторы
- •1. Генераторы на транзисторах
- •2. Генераторы на микросхемах
- •Глава 11 генераторы сигналов специальной формы
- •1. Импульсные генераторы
- •2. Генераторы сигнала пилообразной формы
- •3. Управляемые генераторы
- •4. Генераторы на оу
- •5. Генераторы сложных сигналов
- •Глава 12 управляемые импульсные генераторы
- •1. Двухкаскадные релаксаторы
- •2. Трехкаскадные релаксаторы
- •3. Многокаскадные релаксаторы
- •4. Релаксаторы на логических элементах
- •5. Преобразователи на оу и компараторах
- •6. Счетчики импульсов
- •Глава 13 компараторы, сравнивающие устройства, ограничители
- •1. Ограничители
- •2. Преобразователи формы сигнала
- •3. Пороговые устройства
- •Глава 14 преобразователи частоты
- •1. Преобразователи на транзисторах
- •2. Преобразователи на микросхемах
- •3. Умножители частоты
- •Глава 15 преобразователи сигналов
- •1. Фазочувствительные схемы
- •2. Схемы формирования абсолютного значения
- •3. Умножители
- •4. Аппроксиматоры
- •5. Фазосдвитающие схемы
- •6. Интеграторы, дифференциаторы
- •7. Преобразователи сигналов
- •Глава 16 стабилизаторы напряжения и тока
- •1. Формирователи опорного напряжения
- •2. Маломощные транзисторные стабилизаторы
- •3. Микросхемные стабилизаторы
- •4. Мощные стабилизаторы
- •5. Стабилизаторы с защитой
- •6. Стабилизаторы с оу
- •Глава 17 преобразователи напряжения
- •1. Выпрямительные мосты
- •2. Транзисторные преобразователи
- •3. Двухкаскадные преобразователи
- •5. Умножители напряжения
- •Приложение. Указатель схем включения микросхем и их зарубежные аналоги
- •Глава I. Микросхемы и схемы их включения
- •Глава 2. Эквиваленты радиоэлементов
- •Глава 3. Двухполюсники с отрицательным сопротивлением
- •Глава 4. Усилители
- •Глава 5. Фильтры
- •Редакция литературы по электронной технике
- •Радиоэлектронные устройства (справочник)
8. Электрометрические усилители
Двухкаскадный электрометрический усилитель.Усилитель состоит из двух звеньев (рис. 4.50) — интегрирующего наDA1иVT и пропорционально интегро-дифференцирующегоDA2 Выходное напряжение связано с входным током, протекающим через R1, выражениемUвых = IBxR5C2/C1. Измеряемый входной ток вызывает линейное изменение напряжения на выходе ОУDA1, причем скорость из-менения пропорциональна входному току и обратно лропорциональна емкости конденсатораС1, Второе звено в пределах действия дифференцирующей цепиR5С2проводит дифференцирование выходного напряжения усилителяDA1.
Временной дрейф входного тока за 24 ч составляет 5-10-17А, а температурный дрейф равен 5-10-18А/град. Полоса усиливаемых частот определяется соотношением трех постоянных времениy?tC,, К5С2 иR4C3. Зависимость двойной амплитуды шумового тока, приведенного ко входу, от полосы пропускания приведена на графике рис. 4.50.
Для удовлетворительной работы схемы следует использовать конденсаторы с минимальными утечками. Для устранения перегрузки усилителя желательно применение устройства автоматического сброса напряжения на интегрирующих конденсаторах, наличие которого проиллюстрировано контактами K1 и К.2, включенными параллельноС1 иСЗ.

Рис 4.49
Термостабильный электрометрический усилитель. Электрометрический усилитель (рис 451) позволяет измерять минимальный ток 10~5А При этом выходное напряжение составляет около 50 мВ Усилитель содержит входной каскад на сборке полевых транзисторовDA1 и ОУDA2 в дифференциальном включении Для балансировки схемы служат потенциометрыR5 иR10 Для повышения стабильности схемы желательно к выводу8 микросхемыDA1 подключать резисторы, аналогичные подключенным к выводу6 Это приводит к полной балансировке входных транзисторов Временной дрейф схемы равен 20 мВ/ч, а температурный — 5 мВ/град
Усилитель с компенсацией. Усилитель (рис. 4 52) усиливает сигналы в широкой полосе частот. Верхняя граничная частота определяется сопротивлением резистораR1. Расширение частотного диапазона получено за счет уменьшения емкости затвор — сток транзистораVT1. Это достигается тем, что через стабилитронVD1 с выхода усилителя на сток транзистораVT1 подано напряжение ООС. Схема обладает входным сопротивлением более 1010Ом

Рис. 4.50
Усилитель с регулируемой ООС. Усилитель (рис. 4.53) при коэффициенте усиления в пределах 10 обладает входным сопротивлением более 1010Ом. Коэффициент усиления может меняться в. достаточно широких пределах с помощью потенциометраR5. Форма АЧХ усилителя в зависимости от сопротивления R0проиллюстрирована графиках рис 453. В полосе 50 кГц напряжение шума усилителя равно 1 — 2 мкВ. При использовании вместо микросхемыDA1 полевых транзисторов типа КПЗОЗВ не рекомендуется устанавливать коэффициент усиления более 10. В этом случае необходимо также обращать внимание на температурный и временной дрейфы.
Простой мостовой электрометрический усилитель.Электрометрический усилитель (рис. 4.54) состоит из транзисторно-резисторного моста и усилителя на микросхеме и позволяет измерять входной ток до 2-10-15А. В усилителе применен полевой транзистоиVT, входное сопротивление которого более 10йОм. Динамический диапазон входного напряжения ±0,7 В. Коэффициент усиления схемы равен 10. Верхняя граничная частота усилителя зависит от выходного сопротивления генератора сигнала и входной емкости полевого транзистораVT.
Мостовой электрометрический усилитель.Усилитель собран по мостовой схеме (рис. 4.55), в одно плечо которого включен полевой транзисторVT. Для уменьшения температурного.дрейфа усилителя в схему введены элементы подстройки режима работы полевого транзистора и балансировки моста. Напряжение на истоке транзистора устанавливается с помощью подстроечного резистораR3. Балансировка моста осуществляется подстроечным резисторомR4 В схеме моста желательно использовать резисторы с малым температурным дрейфом. При использовании проволочных резисторов, вызывающихтемпературный дрейф выходного напряжения 700 мкВ/град, что значительно выше температурного дрейфа от полевого транзистора (4 — 7 мкВ/град), компенсации температурного дрейфа следует добиваться с помощью терморезистораR6. В этом случае температурный дрейф может быть снижен до 40 мкВ/град.

Рис. 4.51

Рис. 4.52


Рис. 4.53 Рис. 4.64


Рис. 4.55 Рис. 4.56
Выходной сигнал моста усиливается микросхемой, необходимый коэффициент усиления которой устанавливается резистором R7. Вся схема охвачена общей ООС. Эта связь осуществляется резисторамиR1 иR8 — R10. Усилитель может быть использован для измерения тиков порядка 10-13— 10~12А. Чувствительность схемы равна 3-10-14А при соотношении сигнал-шум, равном 3. Диапазон входных напряжений 0,6 — 6 В. Температурный дрейф 40 мкВ/град. Временной дрейф 10-18А, ч. Полоса пропускания 0 — 7 Гц. Кроме интегральной микросхемы К140УД1Б в устройстве можно применить микросхему К153УД1.
Электрометрический усилитель.Электрометрический усилитель (рис. 4.56) позволяет измерять входные токи 5- 10-16— 5-10~12 А. На входе усилителя применен полевой транзисторVT в схеме истокового повторителя. Сигнал с истока полевого транзистора подается на вход ОУ. Для уменьшения временного и температурного дрейфов полевого транзистора ток через него (0,3 мА) стабилизирован резисторамиR1 иR2 и стабилитрономVD1. Сопротивление резистораR2 следует подбирать с учетом разброса параметров полевого транзистора. Для получения малой рассеиваемой мощности транзисторомVT потенциал стока ограничивается стабилитрономVD2. Выходной сигнал полевого транзистора подается на инвертирующий вход интегральной микросхемы. На неинвертиующий вход этой микросхемы подается постоянное напряжение, с помощью которого согласуются входы усилителя по постоянному уровню. РезисторR8 осуществляет грубую, резисторR7 — плавную балансировку ОУ. Для уменьшения статического заряда в цепи затвора полевого транзистора служит резисторR4 Параллельно этому резистору может быть включена цепочкаR5, С1, которая увеличивает коэффициент усиления и расширяет полосу пропускания усилителя. Постоянная времени при этом уменьшается с 0,1 до 15 мс. С расширением полосы шум усилителя увеличивается до 2-10~15А (для узкой полосы он не превышает 8-10~1вА). Максимальное выходное напряжение ±5 В. Дрейф нуля составляет 0,9 мВ в диапазоне температур 20° — 45° С. Временной дрейф ±0,9 мВ/ч.

Рис. 4.57
Дифференциальный электрометрический усилитель.Входной каскад усилителя (рис. 4.57) выполнен по дифференциальной схеме на полевых транзисторах. Для стабилизации параметров усилителя применена 100%-ная ООС. При разомкнутой цепи ОС коэффициент усиления составляет 104. Постоянная времени входной цепи для R1=1012Ом равна 0,1 с, а дляR1=10МОм — 10 с. Такого же порядка выбирается постоянная времени на выходе ОУ. Временной дрейф за 1 ч равен 0,5 мВ дляR1=1012Ом и 3 мВ дляR1=104Ом. Температурный дрейф в диапазоне от — 30 до 4-50 °С менее 0,1 мВ/град при R1=1012Ом. Шумы на выходе составляют 1,5 мВ дляRl = = 1012Ом и 3 м.В для R1=1014Ом. Пороговая чувствительность для 1012Ом составляет 1,5-10-15А, а для 1014Ом —3-1Q-17 А. При замене микросхемы К140УД1Б на микросхему К153УД1 в два раза увеличивается шумовая составляющая сигнала на выходе схемы.
Повторитель напряжения.Повторитель (рис. 4.58) собран на двух интегральных микросхемах. Предварительный дифференциаль ный каскад выполнен на сборке полевых транзисторовDA1. Входное сопротивление его равно 2-109Ом. Для стабилизации режима половых транзисторов по току в цепь истоков включен генератор тока на транзистореVT. Температурная стабилизация коллекторного тока транзистораVT осуществляется с помощью диодаVD1. Выходной сигнал дифференциального каскада поступает на входы ОУ. Связь выхода ОУ с затвором правого (по схеме) полевого транзистора обеспечивает 100%-ную ООС. Для устранения самовозбуждения в схему введены две корректирующие цепочки, состоящие из элементовR7, Cl, C2, СЗ. При разомкнутой ОС общий коэффициент усиления составляет 80 дБ. Верхняя частота полосы пропускание равна 50 кГц. Коэффициент ослабления синфазного входного напряжения не менее 70 дБ. а температурный дрейф не более 5 мкВ/град. Усилитель с ООС. Усилитель (рис. 4.59) имеет входное сопротивление 5 МОм при полосе пропускания от 2 Гц до 100 кГц. Коэффициент усиления не менее 103. Максимальная амплитуда неискаженно го выходного сигнала 5 В. Усилитель устойчиво работает в диапазоне температур от — 20 до +60 °С. Стабильность параметров усилителя достигнута полной ООС по постоянному току. Полоса пропускания может быть уменьшена изменением параметров цепочкиR6, С2. ТранзисторыVT1 иVT2 могут быть заменены на интегральную микросхему К504НТ4, в которой транзисторы незначительно отличаются между собой по параметрам. Это позволит значительно улучшить параметры усилителя. Кроме того, транзисторыVT3 — VT5 можно заменить микросхемой К198НТ4. При замене транзисторов микросхемой необходимо уменьшить напряжение питания.


Рис. 4.58 Рнс. 4.59
