- •Радиоэлектронные устройства (справочник) Издательство «Радио и связь», 1984 предисловие
- •Глава 1 микросхемы и схемы их включения
- •1. Микросхемы серии к140
- •2. Микросхемы серии к153
- •3. Микросхемы серии k154
- •4. Микросхемы серии к157
- •5. Микросхемы серии к544
- •6. Микросхемы серии к574уд1
- •Глава 2 эквиваленты радиоэлементов
- •1. Резисторные мосты
- •2. Потенциометры
- •3. Аттенюаторы
- •4. Эквиваленты конденсаторов
- •5. Эквиваленты диодов и транзисторов
- •6. Параметры контура
- •7. Преобразователи сопротивлений
- •8. Преобразователи тока
- •9. Преобразователи «напряжение — ток»
- •10. Каскодное включение
- •Глава 3 двухполюсники с отрицательным сопротивлением
- •I. Схемы с характеристикой s-вида
- •2. Схемы с характеристикой n-вида
- •Глава 4 усилители
- •I. Управление коэффициентом усиления
- •2. Сдвоенные оу
- •3. Расширение возможностей оу
- •4. Усилители мощности
- •5. Предусилителй с управляемыми параметрами
- •6. Усилители с непосредственными связями на транзисторах
- •7. Усилители с частотно-зависимым коэффициентом усиления
- •8. Электрометрические усилители
- •9. Усилители с непосредственными связями
- •10. Многокаскадные усилители
- •II. Кабельные усилители
- •12. Мостовые усилители
- •13. Измерительные усилители
- •14. Чувствительные упч
- •15. Полосовые усилители
- •16. Усилители с ару
- •Глава 5 фильтры
- •1. Фильтры с полосой пропускания до 1 кГц
- •2. Многозвенные фильтры
- •3. Управляемые фильтры
- •4. Фильтры на микросхемах
- •5. Фильтры на транзисторах
- •6. Фильтры с повторителями напряжения
- •7. Фильтры на усилителях
- •8. Полосовые фильтры
- •9. Перестраиваемые фильтры
- •Глава 6 модуляторы постоянного тока
- •1. Переключатели на микросхемах
- •2. Переключатели на биполярных транзисторах
- •3. Переключатели на полевых транзисторах
- •4. Переключатели со схемой управления
- •Глава 7 модуляторы переменного тока
- •1. Модуляторы на полевых транзисторах
- •2. Модуляторы гармонических колебаний
- •3. Модуляторы со схемой управления
- •4. Модуляторы вч колебаний на биполярных транзисторах
- •5. Модуляторы на оу
- •Глава 8 детекторы
- •1. Двухполупериодные детекторы
- •2. Детекторы вч сигналов
- •3. Детекторы с оу
- •4. Детекторы с нелинейными передаточными характеристиками
- •5. Частотные детекторы
- •6. Фазовые детекторы
- •7. Однотактные детекторы
- •8. Двухтактные детекторы
- •Глава 9 генераторы гармонических колебаний
- •1. Однокаскадные генераторы
- •2. Многодиапазонные генераторы
- •3. Генераторы на микросхемах
- •4. Генераторы многофазных сигналов
- •5. Генераторы с управляемой амплитудой сигнала
- •6. Многозвенные генераторы
- •Глава 10 импульсные генераторы
- •1. Генераторы на транзисторах
- •2. Генераторы на микросхемах
- •Глава 11 генераторы сигналов специальной формы
- •1. Импульсные генераторы
- •2. Генераторы сигнала пилообразной формы
- •3. Управляемые генераторы
- •4. Генераторы на оу
- •5. Генераторы сложных сигналов
- •Глава 12 управляемые импульсные генераторы
- •1. Двухкаскадные релаксаторы
- •2. Трехкаскадные релаксаторы
- •3. Многокаскадные релаксаторы
- •4. Релаксаторы на логических элементах
- •5. Преобразователи на оу и компараторах
- •6. Счетчики импульсов
- •Глава 13 компараторы, сравнивающие устройства, ограничители
- •1. Ограничители
- •2. Преобразователи формы сигнала
- •3. Пороговые устройства
- •Глава 14 преобразователи частоты
- •1. Преобразователи на транзисторах
- •2. Преобразователи на микросхемах
- •3. Умножители частоты
- •Глава 15 преобразователи сигналов
- •1. Фазочувствительные схемы
- •2. Схемы формирования абсолютного значения
- •3. Умножители
- •4. Аппроксиматоры
- •5. Фазосдвитающие схемы
- •6. Интеграторы, дифференциаторы
- •7. Преобразователи сигналов
- •Глава 16 стабилизаторы напряжения и тока
- •1. Формирователи опорного напряжения
- •2. Маломощные транзисторные стабилизаторы
- •3. Микросхемные стабилизаторы
- •4. Мощные стабилизаторы
- •5. Стабилизаторы с защитой
- •6. Стабилизаторы с оу
- •Глава 17 преобразователи напряжения
- •1. Выпрямительные мосты
- •2. Транзисторные преобразователи
- •3. Двухкаскадные преобразователи
- •5. Умножители напряжения
- •Приложение. Указатель схем включения микросхем и их зарубежные аналоги
- •Глава I. Микросхемы и схемы их включения
- •Глава 2. Эквиваленты радиоэлементов
- •Глава 3. Двухполюсники с отрицательным сопротивлением
- •Глава 4. Усилители
- •Глава 5. Фильтры
- •Редакция литературы по электронной технике
- •Радиоэлектронные устройства (справочник)
4. Эквиваленты конденсаторов
Уменьшение емкости постоянного конденсатора. Включение конденсатора в цепь ОС активного элемента позволяет управлять эквивалентной емкостью с помощью резистора. Эквивалентная емкость конденсатора в схеме на рис. 2.19 зависит от потенциала, до которого он может зарядится при действии входного сигнала. При изменении напряжения, поступающего на вторую обкладку конденсатора, появляется возможность менять эквивалентную емкость. Если на базы транзисторов VT2 иVT4 с резистораR подается половина напряжения, то эквивалентная емкость будет в два раза меньше емкости конденсатора. Подобным способом можно изменять емкость в 1000 раз. Для уменьшения габаритов устройства транзисторыVT1 иVT2 можно заменить интегральной микросхемой К101КТ1, а транзисторыVT3 иVT4 — К124КТ1 (К162КТ1).
Увеличение емкости постоянного конденсатора. Подключением конденсатора в цепь ООС усилителя можно изменить эквивалентную емкость конденсатора Сэкв=С (1 — K). Усилитель должен менять коэффициент усиления с переворотом фазы сигнала. Коэффициент усиления можно регулировать с помощью резистораR2 (рис. 2.20). Большое входное сопротивление усилителя сводит к минимуму токи утечки электронного конденсатора.
Переменный конденсатор на ОУ. Конденсатор постоянной емкости (на схеме рис. 2.21, о) превращается в переменный за счет изменения коэффициента усиления ОУ. Эквивалентная емкость его равна CЭКB=C(l + R2/R1), гдеR1 и R2— части потенциометраR. Таким образом, эквивалентная емкость зависит от угла поворота движка по тенциометра. Грубое и плавное изменение коэффициента передачи, а следовательно и эквивалентной емкости возможно во второй схеме на рис. 2.21,6. ЗдесьCЭKВ = C[1+R2/R1+ R3/R4+R2R3/R1R4].



Рис. 2.19
Рис. 2.20 Рис. 2.21
5. Эквиваленты диодов и транзисторов
Идеальный диод. Полупроводниковые диоды не пригодны для выпрямления малых сигналов. Это обусловлено тем, что для появления проводимости кремниевым диодам требуется напряжение прямого смещения около 0,7 В, а германиевым — около 0,3 В. Если диод включить на выходе ОУ, то пороговые напряжения диодов будут уменьшены в Kу.и раз, гдеKу-u— коэффициент усиления интегральной микросхемы. В результате этого диод начинает проводить при входных сигналах в несколько милливольт.
Первая схема на рис. 2.22 имеет коэффициент усиления, равный единице. Во второй схеме коэффициент усиления можно менять при изменении сопротивлений резисторов Kу.и = 1 + R2/R1.
Управляемый идеальный диод. Для настройки схемы на вход ОУ следует подать напряжение смещения ±304-50 мВ. Это смещение необходимо для выравнивания разбросов падения напряжения на диодах. В сбалансированной схеме при отрицательной полярности входного напряжения на выходе остается нуль. При входном напряжении 10 В на выходе будет приблизительно 1 мВ. Для положительного входного напряжения схема работает как диод в прямом направлении. Коэффициент усиления схемы равенRd(Ri+R2). Выходной ток схемы определяется сопротивлением резистораR1. Для увеличения выходного тока необходимо поставить два транзистора. ТранзисторVT1 (рис. 2.23) разгружает интегральную микросхему от большого тока при отрицательной полярности входного сигнала. Положительная полярность входного сигнала проходит через транзисторVT2. Он же определяет выходной ток. В транзисторной схеме коэффициент усиления равен 0,99. Для уменьшения шумового сигнала на выходе параллельно диодуVD1 следует включить конденсатор, уменьшающий граничную частоту работы схемы. Без конденсатора граничная частота равна 200 кГц.

Рис. 2.22

Рис. 2.23

Рис. 2.24
Стабилизация характеристик транзисторов. Применение ООС для транзисторов, у которых выходные характеристики сильно изменяют свою форму с увеличением базового тока, позволяет значительно улучшить эти характеристики. Схема устройства приведена на рис. 2.24, а. На рис. 2.24,5 приведены характеристики транзистора без ОС, а на рис. 2.24, в — с учетом элементов ОС. В результате этого коэффициент передачи транзистора изменился с 60 на 10 при коллекторном напряжении 20 В. На рис. 2.24, г приведены характеристики с уменьшенным эмиттерным сопротивлением. Коэффициент передачи транзистора в этом случае равен 20.
