Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
labs / ЛАБАРАТОРНАЯ2.doc
Скачиваний:
50
Добавлен:
17.04.2013
Размер:
719.87 Кб
Скачать

Лабораторная работа № 2

Моделирование интегрального тензомоста Часть 1. Теоретические сведения по работе тензомоста.

В общем случае относительное изменение номинала резистора моста R/R0 зависит не только от входной величины х (давления, силы, ускорения и т.д.) но и от ряда дестабилизирующих факторов. Важнейшим из них является температура, т.к. при изменении температуры изменяется удельное сопротивление материала и механические напряжения, т.е. относительная величина входного воздействия является функцией двух переменных

Рассмотрим полную мостовую схему, в которой температура действует синфазно на резисторы моста, т.е.

где - температурный коэффициент сопротивления (ТКС) резисторамоста. Подставляя указанные значения резисторов в основное уравнение моста и проводя преобразования, получим

(1)

(2)

Т.о. чувствительность моста к входному воздействию (крутизна передаточной характеристики) будет зависеть от температуры. При чувствительность моста будет падать, т.е. мост будет характеризоваться отрицательным температурным коэффициентом чувствительности по входу (ТКЧ(x)), а при ТКЧ(x), будет положительным.

Особенно актуальна проблема температурной чувствительности полупроводниковых тензодатчиков, которые обладают значительной величиной . Заметим, что хотя ТКЧ(x) в общем случае является нелинейной функцией от Т, но при  T 1 средняя величина ТКЧ(x) может быть определена как

ТКЧ(x) 

На рис.1 приводятся рассчитанные по формуле (1) передаточные характеристики кремниевого интегрального тензомоста с типичными характеристиками , иллюстрирующие значительный ТКЧ(x) измерительного моста ().

Распространенным вариантом компенсации ТКЧ(x) моста, является последовательное включение с мостом (рис.2) компенсирующего термозависимого резистора (термистора) .

В этом случае напряжение питания моста будет определяться выражением

(3)

где - эквивалентное сопротивление моста. Подставляя (3) в (1) с учетом квазилинейности изменения резистора от температуры, т.е. полагая, получим

. (4)

где - ТКС компенсационного резистора.

Как следует из (4) чувствительность моста к входному воздействию определяется выражением

ТКЧ(x) = , (5)

а температурная чувствительность моста с последовательным резистором определяется как

ТКЧ(Т) = . (6)

Приравнивая (6) к нулю получаем условие термокомпенсации моста

. (7)

Условие (7) имеет физический смысл, если  и  имеют противоположные знаки. Например, для кремниевого тензомоста, где резисторы имеют положительный ТКС, в качестве термокомпенсатора подходят терморезисторы, имеющие отрицательный ТКС. На рис.3 приводится передаточная характеристика термокомпенсированного моста (кривая 1) с и расчетным значением.

Некоторым недостатком термокомпенсации с помощью терморезистора является снижение чувствительности мостовой схемы. Для работы в ограниченном температурном диапазоне для уменьшения ТКЧ(Т) часто качестве устанавливают сравнительно высокоомный резистор постоянного номинала с низким ТКС (    ). При этом исходят из того, что хотя ТКЧ(x) моста в этом случае падает обратно пропорциональна , ТКЧ(Т) моста уменьшается обратно пропорциональна квадрату . Как следует из (6) в этом случае

ТКЧ(Т) = . (8)

Однако в этом простейшем случае происходит лишь частичная термокомпенсация (кривые 2 на рис.3).

Соседние файлы в папке labs