Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika2.docx
Скачиваний:
73
Добавлен:
18.04.2015
Размер:
533.1 Кб
Скачать

Вопросы к коллоквиуму по физике, ФМиИТ 2 курс

  • Электромагнитные явления в природе и способы их описания. Теории близкодействия и действия на расстоянии.

  • Электрический заряд. Закон сохранения заряда. Элементарный заряд. Электризация.

2 Электрический заряд проявляется во взаимодействии между зарядами. Существуют два рода зарядов - положительный и отрицательный, так что одноименные заряды отталкиваются, а разноименные - притягиваются.

Будем считать, что система неподвижных точечных зарядов частиц замкнута, электрически изолированна, тогда справедлив закон сохранения электрических зарядов: в изолированной системе зарядов их алгебраическая сумма неизменна во времени.

Элемента́рный электри́ческий заря́д — фундаментальная физическая постоянная, минимальная порция (квант) электрического заряда. Равен приблизительно 1,602 176 565(35)·10−19 Кл

Если известны число Авогадро NA и постоянная Фарадея F, величину элементарного электрического заряда можно вычислить, используя формулу

(Другими словами, заряд одного моля электронов, делённый на число электронов в моле, равен заряду одного электрона.)

Процесс сообщения телу электрического заряда называется электризацией. Тело можно наэлектрилизовать:

Трением. При натирании стекла бумагой или шёлком оно зарядится положительно (а бумага или шёлк отрицательно), эбонит или пластмасса зарядятся отрицательно при натирании шерстью или мехом (которые приобретут при этом отрицательный заряд).

Прикосновением. Если прикоснуться заряженным телом к незаряженному, то заряд разделится. У обоих тел будут заряды одного знака, сумма которых равна исходному. Чем больше тело, тем большая часть заряда на нём окажется, поэтому если соединить тело проводником с Землёй, фактически весь его заряд уйдёт в Землю (заземление).

По индукции. Если к незаряженному телу поднести заряженное, то вследствие взаимодействия зарядов они перераспределятся в незаряженном теле. Со стороны заряженного тела появится заряд противоположного знака, а с другой стороны - такого же, как и у заряженного тела.

3

  • Основные характеристики электростатического поля. Напряженность. Принцип суперпозиции.

Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).

Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга.

Если в пространстве имеется система заряженных тел, то в каждой точке этого пространства существует силовое электрическое поле. Оно определяется через силу, действующую на пробный заряд, помещённый в это поле. Пробный заряд должен быть малым, чтобы не повлиять на характеристику электростатического поля.

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы  действующей на неподвижный пробный заряд, помещенный в данную точку поля, к величине этого заряда :

.

Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

В Международной системе единиц (СИ):  где  — магнитная постоянная.

При́нцип суперпози́ции : результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил

Согласно принципу суперпозиции электрических полей можно найти напряженность в любой точке А поля двух точечных зарядов  и  (рис. 13.1). Сложение векторов  и  производится по правилу параллелограмма. Направление результирующего вектора  находится построением, а его абсолютная величина может быть подсчитана по формуле

4

  • Закон Кулона и его применения для различных задач. Графическое изображение поля.

Зако́н Куло́на — это закон, описывающий силы взаимодействия между точечными электрическими зарядами.

Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

         |q1||q2|  F=k —————.                  r2

Закон Кулона применим для расчета взаимодействия точечных зарядов и тел шарообразной формы при равномерном распределении заряда по их поверхности или объёму.

Для графического изображения магнитных полей используются линии магнитной индукции. Линия магнитной индукции –это линия, в каждой точке которой вектор магнитной индукции направлен по касательной к ней.

Направление вектора магнитной индукции устанавливают с помощью правила буравчика, которое состоит в следующем: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.

  • Линейные, объёмные и поверхностные распределения зарядов. Поле заряженной нити, полукольца, плоскости.

6

  • Электрический диполь в вакууме.

Электрический диполь — идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов.

Электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга.

7

  • Электрический потенциал. Связь напряженности и потенциала. Примеры.

Электри́ческий потенциа́л — временна́я компонента четырёхмерного электромагнитного потенциала, называемый также иногда скалярным потенциалом (скалярным — в трёхмерном смысле; инвариантом группы Лоренца он не является, то есть, не является неизменным при смене системы отсчёта).

Через электрический потенциал  (но в общем случае не через него один) выражается напряжённость электрического поля:

где  — оператор градиента , а  — векторный потенциал, через который выражается (также) магнитное поле.

В частном случае постоянных или пренебрежимо медленно меняющихся со временем электрического и магнитного полей (случай электростатики), электрический потенциал носит название электростатического потенциала, а формула для напряжённости электрического поля (называемого в этом случае электростатическим) упрощается, так как второй член (производная по времени) равен нулю (или достаточно мал по сравнению с первым — и его можно приравнять нулю в рамках принятого приближения):

В этом случае, как нетрудно увидеть, пропадает (отсутствует) вихревое электрическое поле, поле  — потенциально, а отсюда следует возможность определить электростатический потенциал через работу, совершаемую электрическим полем, так как она в этом случае полностью определяется разностью потенциалов в начальной и конечной точке

8

  • Теорема Гаусса для электрического поля и ее важнейшие применения.

Поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.

где

 — поток вектора напряжённости электрического поля через замкнутую поверхность .

 — полный заряд, содержащийся в объёме, который ограничивает поверхность .

 — электрическая постоянная.

9

  • Поле в веществе. Проводники в электростатическом поле. Метод изображений. Теорема Фарадея.

Если проводник поместить во внешнее электростатическое поле или зарядить его, то на заряды данного проводника будет действовать электростатическое поле, под действием которого они начнут двигаться. Движение зарядов (ток) будет длиться до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри данного проводника обращается в нуль. Это происходит в течение очень короткого времени. Действительно, если бы поле не было равно нулю, то в проводнике появилось бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что не согласуется с законом сохранения энергии. Значит, напряженность поля во всех точках внутри проводника равна нулю:    Если внутри проводника электрического поле отсутствует, то потенциал во всех точках внутри проводника одинаков (φ = const), т. е.поверхность проводника в электростатическом поле является эквипотенциальной. Это означает, что вектор напряженности поля на внешней поверхности проводника направлен по перпендикуляру к каждой точке его поверхности. Если это было бы не так, то под действием касательной составляющей Е заряды начали бы перемещаться по поверхности проводника, что, в свою очередь, противоречило бы равновесному распределению зарядов. 

Теорема Фарадея. Пусть в однородном проводнике имеется полость, внутрь которой внесены электрические заряды. Проведем замкнутую поверхность S, окружающую полость и лежащую в проводнике. Е=0 на поверхности, поэтому сумма зарядов внутри равна 0, и сумма индуцированных зарядов на внутренней поверхности проводящей оболочки равна и противоположна по знаку сумме зарядов, окруженных этой оболочкой. Кулоновское поле зарядов, окруженных проводящей оболочкой. и зарядов, индуцированных на ее внутренней поверхности, равно нулю во всем внешнем пространстве. Если в полости нет зарядов, поле в ней равно нулю. Внешние заряды не создают в полости никакого эл. поля. Чтобы предохранить какие-либо тела от влияния внешних эл. полей, их окружают проводящей оболочкой (электростатическая защита).

10

  • Поле в веществе. Диэлектрики в электростатическом поле. Свободные и связанные заряды. Полярные и неполярные диэлектрики. Механизмы поляризации.

ДИЭЛЕКТРИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

Внутри диэлектрика может существовать электрическое поле!

Электрические свойства нейтральных атомов и молекул: Нейтральный атом -положительный заряд ( ядро) сосредоточен в центре; - отрицательный заряд - электронная оболочка;  считается, что из-за большой скорости движения электронов по орбитам центр распределения отрицательного заряда совпадает с центром атома. Молекула - чаще всего - это система ионов с зарядами противоположных знаков , т.к. внешние электроны слабо связаны с ядрами и могут переходить к другим атомам. Электрический диполь - молекула, в целом нейтральная , но центры распределения противоположных по знаку зарядов разнесены; рассматривается, как совокупность двух точечных зарядов, равных по модулю и противоположных по знаку, находящихся внутри молекулы на некотором расстоянии друг от друга. Существуют 2 вида диэлектриков ( различаются строением молекул) : 1) полярные - молекулы, у которых центры положительного и отрицательного зарядов не совпадают ( спирты, вода и др.);

2) Неполярные - атомы и молекулы, у которых центры распределения зарядов совпадают (инертные газы, кислород, водород, полиэтилен и др.).

ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

- смещение положительного и отрицательного зарядов в противоположные стороны, т.е.ориентация молекул.

Поляризация полярных диэлектриков Диэлектрик вне эл.поля - в результате теплового движения электрические диполи ориентированы беспорядочно на поверхности и внутри диэлектрика. q = 0 и Eвнутр = 0 Диэлектрик в однородном эл.поле - на диполи действуют силы, создают моменты сил и поворачивают диполи вдоль силовых линий эл.поля.

НО ориентация диполей - только частичная, т.к. мешает тепловое движение. На поверхности диэлектрика возникают связанные заряды, а внутри диэлектрика заряды диполей компенсируют друг друга. Таким образом, средний связанный заряд диэлектрика = 0. Поляризация неполярных диэлектриков - тоже поляризуются в эл.поле: положительные и отрицательные заряды молекул смещаются,

центры распределения зарядов перестают совпадать (как диполи), на поверхности диэлектрика возникает связанный заряд, а внутри эл.поле лишь ослабляется.

Ослабление поля зависит от свойств диэлектрика.

  • Характеристики электрического поля в диэлектриках. Поляризация и вектор смещения. Диэлектрическая проницаемость и восприимчивость.

12

  • Теорема Гаусса для диэлектрика и ее важнейшие применения (поле заряженной пластины, цилиндра, шара).

Теорема Гаусса для электростатического поля в диэлектрике

13

  • Электроемкость. Конденсаторы. Расчет электрической ёмкости с помощью теоремы Гаусса. Примеры.

Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников. Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.

Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:

В системе СИ единица электроемкости называется фарад (Ф): 

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники. Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, – обкладками

Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкции состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок (см. рис.). Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

14

  • Параллельное и последовательное соединение конденсаторов. Энергия электрического поля.

Параллельное соединение конденсаторов

На рис. 1 изображено параллельное соединение нескольких конденсаторов. В этом случае напряжения, подводимые к отдельным конденсаторам, одинаковы: U1 = U2 = U3 = U. Заряды на обкладках отдельных конденсаторов: Q1 = C1U, Q2 = C2U, Q3 = C3U, а заряд, полученный от источника Q = Q1 + Q2 + Q3.

Рис. 1. Схема параллельного соединения конденсаторов

Общая емкость равнозначного (эквивалентного) конденсатора:

C = Q / U = (Q1 + Q2 + Q3) / U = C1 + C2 + C3,

т. е. при параллельном соединении конденсаторов общая емкость равна сумме емкостей отдельных конденсаторов.

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов (рис. 3) на обкладках отдельных конденсаторов электрические заряды по величине равны: Q1 = Q2 = Q3 = Q

Действительно, от источника питания заряды поступают лишь на внешние обкладки цепи конденсаторов, а на соединенных между собой внутренних обкладках смежных конденсаторов происходит лишь перенос такого же по величине заряда с одной обкладки на другую (наблюдается электростатическая индукция), поэтому и на них по- являются равные и разноименные электрические заряды. 

Рис. 3. Схема последовательного соединения конденсаторов

Напряжения между обкладками отдельных конденсаторов при их последовательном соединении зависят от емкостей отдельных конденсаторов: U1 = Q/C1, U1 = Q/C2, U1 = Q/C3, а общее напряжение U = U1 + U2 + U3

Общая емкость равнозначного (эквивалентного) конденсатора C = Q / U = Q / (U1 + U2 + U3), т. е. при последовательном соединении конденсаторов величина, обратная общей емкости, равна сумме обратных величин емкостей отдельных конденсаторов.

Формулы эквивалентных емкостей аналогичны формулам эквивалентных проводимостей. 

Энергия электростатического поля - это энергия системы неподвижных точечных зарядов, энергия уединенного заряженного проводника и энергия заряженного конденсатора.

Если имеется система двух заряженных проводников (конденсатор), то полная энергия системы равна сумме собственных потенциальных энергий проводников и энергии их взаимодействия:

15

  • Постоянный электрический ток. Плотность тока. Уравнение непрерывности. Закон Ома в дифференциальной форме. Skyn-эффект.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени. Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Плотность тока равна заряду, проходящему в единицу времени через единицу поверхности, которая перпендикулярна к линиям тока.

Закон Ома в дифференциальной форме Сопротивление R зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника. Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем: j=σ*E где j- вектор плотности тока, σ — удельная проводимость, E — вектор напряжённости электрического поля. Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1). Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.

Скин-эффект (поверхностный эффект) — эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое

16

  • Проводимость и сопротивление. Удельное сопротивление проводников и его зависимость от температуры. Токи утечки в конденсаторах.

Электри́ческая проводи́мость — способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению

Удельной проводимостью (удельной электропроводностью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

где

 — удельная проводимость,

 — вектор плотности тока,

 — вектор напряжённости электрического поля.

Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.

Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как

где

R — сопротивление;

U — разность электрических потенциалов (напряжение) на концах проводника;

I — сила тока, протекающего между концами проводника под действием разности потенциалов.

Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что

  • возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;

  • изменяется их концентрация при нагревании проводника.

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:

 ρt=ρ0(1+αt),

 Rt=R0(1+αt),

где ρ0ρt — удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R0Rt — сопротивления проводника при 0 °С и t °С, α — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К-1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.

17

  • Сторонние электродвижущие силы. Законы Ома и Джоуля-Ленца в интегральной форме. Работа и мощность тока.

Закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.

РАБОТА ЭЛЕКТРИЧЕСКОГО ТОКА

Работа электрического тока показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику.

Зная две формулы: I = q/t и U = A/q  можно вывести формулу для расчета работы электрического тока:   Работа электрического тока равна произведению силы тока на напряжение и на время протекания тока в цепи.

Единица измерения работы электрического тока в системе СИ: [ A ] = 1 Дж = 1A. B . c

МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА

Мощность электрического тока показывает работу тока, совершенную в единицу времени и равна отношению совершенной работы ко времени, в течение которого эта работа была совершена.

(мощность в механике принято обозначать буквой N, в электротехнике — буквой Р) так как А = IUt, то мощность электрического тока равна:

или 

Единица мощности электрического тока в системе СИ:

[ P ] = 1 Вт (ватт) = 1 А . B

18

  • Электрические цепи. Применение законов Кирхгофа.

Под электрической цепью понимают набор электрических элементов, соединенных проводниками и подключенных к источнику электрического питания. Элементами электрической цепи могут быть резисторы, конденсаторы, индуктивности, полупроводниковые приборы и ряд других устройств.

Первый закон Кирхгофа вытекает из закона сохранения заряда. Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.

где – число токов, сходящихся в данном узле.

Например, для узла электрической цепи (рис. 1) уравнение по первому закону Кирхгофа можно записать в виде I1 - I2 + I3 - I4 + I5 = 0

Рис. 1

В этом уравнении токи, направленные к узлу, приняты положительными.

Второй закон Кирхгофа: алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii, Ri – ток и сопротивление i-й ветви.

Рис. 2

Так, для замкнутого контура схемы (рис. 2) Е1 - Е2 + Е3 = I1R1 - I2R2 + I3R3 - I4R4

  • RC – цепь. Разрядка конденсатора.

  • Магнитное поле в вакууме. Силы, действующие на заряды и токи в магнитном поле.

  • 21

  • Магнитное поле элемента тока. Применение закона Био-Савара. Поле прямого тока и кругового витка.

Закон Био Савара Лапласа определяет величину модуля вектора магнитной индукции в точке выбранной произвольно находящейся в магнитном поле. Поле при этом создано постоянным током на некотором участке.

  Формулировка закона Био Савара Лапласа имеет вид: При прохождении постоянного тока по замкнутому контуру, находящемуся в вакууме, для точки, отстоящей на расстоянии r0, от контура магнитная индукция будет иметь вид.

22

  • Теорема Гаусса для магнитного поля и её смысл. Теорема о циркуляции вектора В, её применения.

 - теорема о циркуляции вектора :

циркуляция вектора  по произвольному контуру равна произведению  на алгебраическую сумму токов, охватываемых контуром.

23

  • Магнитное поле в веществе. Вектор намагничивания, напряженность магнитного поля. Типы магнетиков. Магнитная проницаемость и восприимчивость. Ферромагнитный гистерезис.

Вектор намагничивания — магнитный момент элементарного объёма, используемый для описания магнитного состояния вещества. По отношению к направлению вектора магнитного поля различают продольную намагниченность и поперечную намагниченность. Поперечная намагниченность достигает значительных величин в анизотропных магнетиках, и близка к нулю в изотропных магнетиках. Поэтому, в последних возможно выразить вектор намагничивания через напряжённость магнитного поля и коэффициент  названный магнитной восприимчивостью:

Напряжённость магни́тного по́ля — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

 где  — магнитная постоянная.

Магнетики принято делить на три класса:

     1) парамагнетики – вещества, которые слабо намагничиваются в магнитном поле, причем результирующее поле в парамагнетиках сильнее, чем в вакууме, магнитная проницаемость парамагнетиков m > 1; Такими свойствами обладают алюминий, платина, кислород и др.;

     2) диамагнетики – вещества, которые слабо намагничиваются против поля, то есть поле в диамагнетиках слабее, чем в вакууме, магнитная проницаемость m < 1. К диамагнетикам относятся медь, серебро, висмут и др.;

     3) ферромагнетики – вещества, способные сильно намагничиваться в магнитном поле, . Это железо, кобальт, никель и некоторые сплавы.

Магнитная проницаемость — физическая величина, коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией  и напряжённостью магнитного поля  в веществе. Для разных сред этот коэффициент различен, поэтому говорят о магнитной проницаемости конкретной среды 

Связь соотношение между магнитной индукцией и напряженностью магнитного поля через магнитную проницаемость вводится как

Магнитная восприимчивость определяется отношением намагниченности единицы объёма вещества к напряжённости намагничивающего магнитного поля. По своему смыслу восприимчивость является величиной безразмерной.

, где  — намагниченность вещества под действием магнитного поля,  — напряженность магнитного поля.

24

  • Магнитный поток. Электромагнитная индукция. Закон Фарадея. Правило Ленца.

Магни́тный пото́к — поток  как интеграл вектора магнитной индукции  через конечную поверхность  . Определяется через интеграл по поверхности

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Явление электромагнитной индукции - возникновение электрического тока в замкнутом проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле так, что число линий магнитной индукции, пронизывающих контур, меняется. Чем быстрее меняется число линий магнитной индукции, тем больше индукционный ток.

Закон Фарадея: для любого замкнутого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]