Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Vishmat2docx.docx
Скачиваний:
41
Добавлен:
18.04.2015
Размер:
502.08 Кб
Скачать

Билет 17

17. Понятие фундаментальной системы решений линейных однородных диф уравнений.Вронскийан.

Фундаментальной системой решений однородного линейного дифференциального уравнения называется упорядоченный набор из n линейно независимых решений уравнения.

Иными словами любые n линейно независимых решений   y1(x), y2(x),..., yn(x) уравнения y(n) + an-1(x)y(n - 1) + ... + a1(x)y' + a0(x)y = 0 образуют фундаментальную систему решений.

 

Доказано, что у однородного линейного дифференциального уравнения с непрерывными коэффициентами существует фундаментальная система решений.

Пусть задана некоторая линейно независимая система n векторов из Rn:

И пусть функции   y1(x), y2(x),..., yn(x) — решения линейного однородного уравнения с начальными условиями:

Функции y1(x), y2(x),..., yn(x) образуют фундаментальную систему решений линейного однородного уравнения.

Вронскиа́н (определитель Вронского) системы функций , дифференцируемых на промежутке  (n-1)-раз — функция на , задаваемая определителем следующей матрицы:

.

Также вронскианом называют функцию, заданную определителем более общего вида. А именно, пусть задано n вектор-функций  с n компонентами: . Тогда определитель будет выглядеть так (чтобы избежать разночтений обозначим его ):

.

Определитель Вронского применяется для решения дифференциальных уравнений, например для того, чтобы узнать, являются ли найденные решения однородного линейного дифференциального уравнения (либо системы уравнений) линейно независимыми. Это помогает в поиске его общего решения.

48. представление функции ln(1+x) в виде степенного ряда.

Билет 18

18.Линейные однородные диф уравнения с пост коэффициентами второго порядка.

Случай различных диф корней характеристического уравнения.

Рассмотрим линейное дифференциальное уравнение вида

где p, q − постоянные коэффициенты.  Для каждого такого дифференциального уравнения можно записать так называемое характеристическое уравнение:

Обшее решение однородного дифференциального уравнения зависит от корней характеристического уравнения, которое в данном случае будет являться квадратным уравнением. Возможны следующие случаи:

Дискриминант характеристического квадратного уравнения положителен: D > 0. Тогда корни характеристического уравнения k1 и k2 действительны и различны. В этом случае общее решение описывается функцией

где C1 и C2 − произвольные действительные числа. 

Дискриминант характеристического квадратного уравнения равен нулю: D = 0. Тогда корни действительны и равны. В этом случае говорят, что существует один корень k1 второго порядка. Общее решение однородного дифференциального уравнения имеет вид:

Дискриминант характеристического квадратного уравнения отрицателен: D < 0. Такое уравнение имеет комплексно-сопряженные корни k1 = α + βik1 = α − βi. Общее решение записывается в виде

Рассмотренные три случая удобно представить в виде таблицы:

Если все корни характеристического уравнения (3) действительные и различные числа  , то система решений  будет линейно независимой, а общее решение уравнения (2) запишется в виде:

   , (4)

где  - произвольные константы.

49. представление функции arctg x в виде степенного ряда.

Билет 19

19. Лоду с пос коэф. Второго порядка.

Случай кратных действ корней характеристического уравнения

Случай различных диф корней характеристического уравнения.

Рассмотрим линейное дифференциальное уравнение вида

где p, q − постоянные коэффициенты.  Для каждого такого дифференциального уравнения можно записать так называемое характеристическое уравнение:

Обшее решение однородного дифференциального уравнения зависит от корней характеристического уравнения, которое в данном случае будет являться квадратным уравнением. Возможны следующие случаи:

Дискриминант характеристического квадратного уравнения положителен: D > 0. Тогда корни характеристического уравнения k1 и k2 действительны и различны. В этом случае общее решение описывается функцией

где C1 и C2 − произвольные действительные числа. 

Дискриминант характеристического квадратного уравнения равен нулю: D = 0. Тогда корни действительны и равны. В этом случае говорят, что существует один корень k1 второго порядка. Общее решение однородного дифференциального уравнения имеет вид:

Дискриминант характеристического квадратного уравнения отрицателен: D < 0. Такое уравнение имеет комплексно-сопряженные корни k1 = α + βik1 = α − βi. Общее решение записывается в виде

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]