
- •3.1. Производные и дифференциалы
- •3.1.1. Производная и ее геометрический смысл
- •Определение 3.1.1
- •Определение 3.1.2
- •Геометрический смысл производной
- •Доказательство
- •3.1.2. Дифференцируемая функция
- •Определение 3.1.3
- •Необходимое и достаточное условие дифференцируемости функции
- •Доказательство
- •Определение 3.1.4
- •3.1.3. Непрерывность и дифференцируемость функции
- •Теорема 3.1.1
- •Доказательство
- •Задача 3.1.1
- •Задача 3.1.1
- •Определение 3.1.5
- •3.1.4. Правила дифференцирования
- •Производная функции, тождественно равной постоянной
- •Производная суммы и разности функций
- •Доказательство
- •Производная произведения функций
- •Доказательство
- •Следствие
- •Доказательство
- •Производная частного
- •Доказательство
- •Теорема о производной обратной функции
- •Доказательство
- •Производная сложной функции
- •Доказательство
- •3.1.5. Производные основных элементарных функций
- •Производная степенной функции
- •Доказательство
- •Производная экспоненциальной и показательной функций
- •Доказательство
- •Производная логарифмической функции
- •Доказательство
- •Производные тригонометрических функций
- •Доказательство
- •Производные обратных тригонометрических функций
- •Доказательство
- •Производные гиперболических функций
- •Доказательство
- •Пример 3.1.2
- •Решение
- •Задача 3.1.3
- •Решение
- •3.1.6. Уравнение касательной к кривой. Угол между кривыми.
- •Уравнение касательной
- •Доказательство
- •Задача 3.1.4
- •Решение
- •Задача 3.1.5
- •Решение
- •3.1.7. Дифференциал. Формула дифференциала
- •Определение 3.1.6
- •Правила дифференцирования
- •Задача 3.1.6
- •Решение
- •Геометрический смысл дифференциала
- •Доказательство
- •Инвариантность формулы дифференциала
- •Доказательство
- •Следствие
- •3.1.8. Производные функций, заданных параметрически. Дифференцирование неявных функций
- •Производная функции, заданной параметрически
- •Доказательство
- •Задача 3.1.7
- •Решение
- •Производная функции, заданной неявно
- •Задача 3.1.8
- •Решение
- •Задача 3.1.9
- •Решение
- •3.1.10. Приближенные вычисления с помощью дифференциала.
- •Задача 3.1.10
- •Решение
- •3.1.10. Производные высших порядков
- •Определение 3.1.7
- •Задача 3.1.11
- •Решение
- •Задача 3.1.12
- •Решение
- •Задача 3.1.13
- •Решение
- •Задача 3.1.14
- •Решение
- •Механический смысл первой и второй производной
- •Доказательство
- •Следствие
- •3.1.11. Дифференциалы высших порядков.
- •Определение 3.1.8
- •Формула второго дифференциала
- •Доказательство
- •Задача 3.1.15
- •Решение
- •Задача 3.1.16
- •Решение
- •3.1.12. Теоремы Ферма, Ролля, Лагранжа. Правила Лопиталя
- •Теорема Ферма
- •Доказательство
- •Следствие
- •Теорема Ролля
- •Доказательство
- •Теорема Лагранжа.
- •Доказательство
- •Правило Лопиталя
- •Доказательство
- •Задача 3.1.17
- •Решение
- •Задача 3.1.18
- •Решение
- •Задача 3.1.19
- •Решение
- •3.1.13. Формула Тейлора и ее применение
- •Многочлен Тейлора
- •Определение 3.1.9
- •Теорема 3.1.2
- •Доказательство
- •Формулы Тейлора и Маклорена
- •Определение 3.1.9
- •Теорема 3.1.3
- •Доказательство
- •Определение 3.1.10
- •Формула Маклорена для основных элементарных функций
- •Задача 3.1.20
- •Решение
- •Задача 3.1.21
- •Решение
- •Применение формул Тейлора и Маклорена
- •Задача 3.1.22
- •Решение
- •Задача 3.1.23
- •Решение
- •Задача 3.1.24
- •Решение
- •3.2. Исследование функций с помощью производных
- •3.2.1. Исследование функций с помощью первой производной
- •Определение 3.2.1
- •Определение 3.2.2
- •Необходимое условие экстремума
- •Доказательство
- •Следствие
- •Определение 3.2.3
- •Достаточное условие экстремума
- •Доказательство
- •Задача 3.2.1
- •Решение
- •Задача 3.2.2
- •Решение
- •Чтобы исследовать функцию на экстремум необходимо:
- •Задача 3.2.3
- •Решение
- •3.2.2. Исследование функций с помощью второй производной. Точки перегиба
- •Определение 3.2.4
- •Определение 3.2.5
- •Теорема 3.2.1
- •Доказательство
- •Теорема 3.2.2
- •Доказательство
- •Определение 3.2.6
- •Теорема 3.2.3
- •Чтобы найти точки перегиба графика функции нужно:
- •Задача 3.2.4
- •Решение
- •Задача 3.2.5
- •Решение
- •3.2.3. Асимптоты графика функции.
- •Определение 3.2.7
- •Задача 3.2.6
- •Решение
- •Определение 3.2.8
- •Теорема 3.2.3
- •Доказательство
- •Задача 3.2.7
- •Решение
- •3.2.4. Наибольшее и наименьшее значения непрерывной на замкнутом промежутке функции
- •Задача 3.2.8
- •Решение
- •3.2.5. Элементы дифференциальной геометрии плоских кривых
- •Пример 3.2.8
- •Решение
- •Пример 3.2.9
- •Решение
- •Касательная к пространственной кривой и нормальная плоскость
- •Пример 3.2.10
- •Решение
- •Дифференциальные характеристики плоских кривых
- •Определение 3.2.9
- •Определение 3.2.10
- •Определение 3.2.11
- •Пример 3.2.11
- •Решение
- •Пример 3.2.12
- •Решение

Функцию |
cos y |
можно |
|
выразить |
|
|
через |
|
|
|
|
функцию |
|
|
sin y |
|
|
|
из |
основного |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
тригонометрического тождества sin 2 y + cos2 y =1 . |
cos y = ± 1 −sin2 y . |
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Поскольку |
|
y [− |
π |
; |
|
π |
], |
|
что |
соответствует |
|
|
|
|
первой |
и четвертой |
четвертям |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
2 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
тригонометрического |
|
|
круга, то |
cos y ≥ 0 . |
Следовательно, |
|
|
cos y = |
|
1 −sin 2 y , |
где |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
sin y = x . Тогда для производной для функции y = arcsin x справедливо равенство: |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(arcsin x)′ = |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
1 |
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 −sin 2 y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 − x2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
Для вычисления производной от функции |
y = arccos x |
|
используем |
|
соотношение |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
arcsin x + arccos x = |
π |
|
|
|
|
и |
выразим |
|
из |
|
|
него |
arccos x = |
π |
|
|
− arcsin x . |
|
Долее можно |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
использовать правило дифференцирования разности двух функций. |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
(arccos x)′ = ( |
π |
−arcsin x)′ |
= |
( |
π |
)′ |
−(arcsin x)′ = − |
|
|
|
|
|
|
1 |
|
|
|
|
. |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 − x2 |
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
Функция y = arctg x задана на промежутке x (− ∞; ∞) и ее значения принадлежат |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
промежутку |
|
y (− |
π |
|
, |
|
|
π |
). На промежутке |
|
y (− |
π |
|
, |
π |
) определена обратная функция |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
2 |
|
|
|
|
2 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
x = tg y . |
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
Для |
|
вычисления |
ее |
|
|
производной |
|
можно |
|
|
использовать |
|
правило |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
дифференцирования обратной функции. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
′ |
|
1 |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
y′x |
|
= (arctg x)x |
= |
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
= cos |
|
|
y . |
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
x′y |
|
|
(tg y)′y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1cos2 y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
Из основного |
тригонометрического |
|
тождества |
|
1 + tg 2 y = |
|
|
|
|
1 |
|
|
|
|
следует, |
что |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
2 |
y |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cos |
|
|
|
|
|
|
|
|
|||||||
cos2 y = |
|
1 |
|
. Следовательно, |
(arctg x)x′ = cos2 y = |
|
|
|
|
1 |
|
|
|
= |
|
1 |
|
|
. |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
1 + tg 2 |
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 + tg2 y 1 + x2 |
|
|
|
|
|
|||||||||||||||||||||||||||||
Для вычисления производной от функции |
y = arcctg x |
|
используем |
|
соотношение |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
arctg x + arcctg x = |
π |
|
и выразим из него arcctg x = |
π |
− arctg x . Долее можно использовать |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
правило дифференцирования разности двух функций. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||
|
|
(arcctg x)′ = ( |
π |
−arctg x)′ |
= ( |
π |
)′ |
|
− (arctg x)′ = 0 − |
|
1 |
|
|
|
|
= − |
|
|
|
1 |
|
. |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
1 + x2 |
1 + x2 |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
Производные гиперболических функций |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||
Гиперболическими называются следующие функции: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||
sh x = |
|
ex −e−x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ch x = |
ex +e−x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
– гиперболический синус; |
|
|
|
|
|
|
|
|
|
– гиперболический |
|
||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
косинус; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
th x = |
sh x |
– гиперболический тангенс; cth x = |
ch x |
|
– гиперболический котангенс. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
ch x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sh x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
Для гиперболических функций справедливы соотношения: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
ch 2 x −sh 2 x =1; ch 2 x +sh 2 x = ch 2x; 2sh x ch x = sh 2x ; |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
th x cth x =1; |
1 + th 2 x = |
1 |
|
; |
|
1 + cth 2 x = |
|
|
|
|
1 |
. |
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
ch 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sh 2 x |
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Для производных гиперболических функций справедливы соотношения:
|
|
|
|
|
|
|
|
|
|
′ |
|
|
|
|
|
|
|
|
|
|
|
′ |
|
|
|
|
′ |
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
′ |
|
|
|
|
|
1 |
|
|
|
|||||
|
|
(sh x) |
|
|
= ch x; |
(ch x) = sh x; |
(th x) |
|
= |
|
|
|
|
|
; |
|
|
|
|
(cth x) |
|
|
= − |
|
|
. |
|
|||||||||||||||||||||||||||||||||||
|
|
|
ch 2 x |
|
sh 2 x |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Доказательство |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
′ |
|
|
|
ex |
−e−x |
′ |
|
ex +e−x |
|
|
|
|
′ |
|
ex + e−x |
′ |
|
ex −e−x |
|
|
|
|
|||||||||||||||||||||||||||||||||||
(sh x) |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= ch x ; (ch x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
= sh x . |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
2 |
|
|
= |
|
|
2 |
|
= |
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
2 |
|
|
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
′ |
|
|
sh x ′ |
|
sh′x ch x −ch′x sh x |
|
|
ch2 x −sh2 |
x |
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||
(th x) |
= |
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
, так как |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
ch x |
|
|
|
|
|
ch2 x |
|
|
|
|
|
|
|
|
|
ch2 x |
|
|
|
|
|
|
|
|
|
|
ch2 |
x |
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
1 ′ |
|
|
|
|
|
|
|
|
ch 2 x −sh 2 x =1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
′ |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
1 |
|
|
ch 2 x |
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
(cth x) |
|
= |
|
|
|
|
|
|
|
|
|
= − |
|
|
|
|
|
|
|
= − |
|
|
|
|
|
|
|
|
= − |
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
th 2 |
|
|
ch 2 |
|
sh 2 x |
ch |
2 x |
|
sh 2 |
x |
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
th x |
|
|
x |
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||
Полученные результаты запишем в таблицу 3.1.1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Таблица 3.1.1. Производные основных элементарных функций. |
|||||||||||||||||||||||||||||||||||||||||||
(xα )′ = α xα−1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(arcsin x)′ = |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
− x2 |
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
(e x )′ = ex |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(arccos x)′ = − |
|
|
1 |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 − x2 |
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
(a x )′ = a x ln a |
|
|
|
|
|
|
|
|
|
|
|
|
|
(arctg x)′ = |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ x2 |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
||||||||||||||
′ |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
′ |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|||||||
(ln x) |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(arcctg x) |
= − |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1+ x2 |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
(loga x)′ = |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(sh x)′ |
= ch x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
x ln a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
(sin x)′ = cos x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(ch x)′ |
= sh x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||
(cos x)′ = −sin x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
′ |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(th x) = |
ch 2 x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
′ |
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
′ |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
(tg x) |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(cth x) |
|
= − |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
cos2 x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sh 2 x |
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||
′ |
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
(ctg x) |
|
= − |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
sin2 x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
Пример 3.1.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
Вычислите производную функции y = |
cos(3x − 2). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||
Решение |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Заданная функция является суперпозицией трех функций |
|
y = (cos(3x − |
1 |
. Будем |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
2))2 |
дифференцировать эту функцию, используя правила дифференцирования, начиная с внешней, степенной функции:
y′ = (cos(3x − 2))12 ′ (cos(3x − 2))′ (3x − 2)′.
15