
- •Лекция 23 «Расчет конструкций по методу предельного равновесия»
- •23.1. Основные положения
- •23.2. Определение предельного состояния системы при растяжении-сжатии
- •23.3. Предельное состояние статически определимых систем при изгибе
- •23.4. Расчет статически неопределимых балок по предельному состоянию. Кинематический и статический способ.
- •23.5. Пример расчета статически неопределимой балки
Лекция 23 «Расчет конструкций по методу предельного равновесия»
23.1. Основные положения
Расчет конструкций в упругой постановке задачи, как известно, проводится по методу допускаемых напряжений. Данный подход при расчете статически определимых и статически неопределимых систем не позволяет найти их истинный запас прочности, так как исчерпание несущей способности конструкции сопровождается появлением в ней пластических деформаций. Для выявления истинного запаса несущей способности конструкции необходимо проводить расчет с учетом упруго-пластических деформаций. Однако сложность аппарата теории пластичности не позволяет решать широкий круг очень важных инженерных задач. В этом отношении расчет конструкций по методу предельного равновесия, позволяет дополнить существующий пробел по данному вопросу. Поэтому, метод расчета конструкций по предельным состояниям, по сравнению с упругим расчетом, является важным этапом для оценки истинных запасов прочности конструкции. При этом следует отметить, что расчет конструкций по методу предельных состояний является приближенным в том контексте, что, в отличии от упруго-пластического расчета, не позволяет описать процесс перехода от упругого к предельному состоянию.
Если при проектировании инженерных сооружений необходимо знать процесс формирования напряженно-деформированного состояния вплоть до исчерпания несущей способности конструкций, метод предельного равновесия неприменим. Однако, в тех случаях, когда необходимо определить только несущую способность конструкции этот метод является очень эффективным и имеет важное практическое значение.
При расчете
конструкций по допускаемым напряжениям
в упругой постановке задачи, как известно,
предельной нагрузкой считается та, при
которой наибольшее напряжение smax,
хотя бы в одной точке опасного сечения
достигает величины
.
При этом вводится понятие о допускаемом
напряжении, определяемом по формуле
,
гдеn - коэффициент
запаса.
При расчете конструкций по методу предельного равновесия предполагается двухстадийный характер деформирования материала: в первой стадии материал подчиняется закону Гука, пока напряжения не достигнут предела текучести; а затем во второй стадии, предполагая, что в нем в определенной стадии нагружения в опасных сечениях беспредельно развиваются пластические деформации при постоянном напряжении. Диаграмма зависимости напряжения от деформации для идеально упруго-пластического материала имеет вид (см. рис.22.3, в).
Суть метода состоит в том, что конструкция рассматривается в момент, непосредственно предшествующий ее разрушению, когда еще выполняются условия равновесия для внутренних и внешних сил, достигающих предельных значений. Отсюда и произошло название метода предельного равновесия.
Реальные конструкции представляют собой в большинстве случаев многократно статически неопределимые системы, материал которых обладает свойством пластичности. Благодаря этому конструкции обладают дополнительными резервами несущей способности. После того, как в наиболее опасных сечениях напряжения достигают предела текучести, в отличие от статически определимых систем, статически неопределимые системы могут нести дополнительные нагрузки за счет перераспределения внутренних сил.
Для наглядности ниже рассмотрим наиболее представительные примеры расчета конструкций по методу предельного равновесия.