
- •Лекция 1
- •Цель и задачи курса
- •Краткая историческая справка
- •Основные определения курса тмм
- •2.Кулачковые механизмы (рис. 1.2).
- •3.Зубчатые механизмы (рис.1.3).
- •4.Фрикционные механизмы (рис.1.4).
- •5.Гидравлические, пневматические механизмы (рис.1.5).
- •6.Механизмы с гибкими звеньями (рис.1.6).
- •7.Клиновые механизмы (рис.1.7).
- •Кинематическая пара
- •А). По числу степеней подвижности н
- •Б). По характеру соприкосновения звеньев
- •В). По характеру относительного движения
- •Кинематические цепи
- •Классификация кинематических цепей
- •Лекция 2
- •Степень подвижности механизма
- •Структурный принцип образования механизмов. Группы Ассура
- •Виды групп Ассура II класса
- •Структурный анализ механизма
- •Алгоритм проведения структурного анализа
- •1.Структурная схема механизма.
- •2.Звенья механизма
- •4.Степень подвижности механизма
- •Основные формулы для определения скоростей и ускорений точек звеньев
- •План скоростей
- •1.Определение ускорения точки а.
- •План ускорений
- •2.Определение ускорения точки в.
- •3.Определение ускорения точки с.
- •4.Определение ускорения точки .
- •5.Определение углового ускорения шатуна ав.
- •Лекция 4
- •Задачи силового анализа
- •Силы, действующие на звенья механизма
- •1.Движущие силы и моменты движущих сил
- •2.Силы сопротивления и моменты сил сопротивления
- •3.Силы инерции и моменты сил инерции
- •4.Силы тяжести (веса) звеньев
- •2.Принцип освобождаемости от связей:
- •3.Группа Ассура является статически определимой кинематической цепью.
- •Силовой расчет группы Аcсура вида ввп
- •Силовой расчет начального механизма
- •1.Определение силы тяжести звена:
- •2.Определение силы инерции:
- •2.Найдем реакцию r41.
- •Лекция 5
- •Зубчатые механизмы
- •Классификация зубчатых механизмов
- •Методы изготовления эвольвентных зубчатых колёс
- •Способ копирования
- •Исходный контур. Рабочий контур
- •Минимальное число зубьев зубчатого колеса, изготовленного без смещения и со смещением исходного контура
- •Геометрические размеры эвольвентного зубчатого колеса, изготовленного со смещением исходного контура
- •Лекция 6
- •Многоступенчатые зубчатые механизмы
- •Определение передаточных отношений многоступенчатых зубчатых механизмов
- •Кинематика коробки передач
- •Дифференциальные механизмы
- •Метод обращённого движения
- •Кинематика автомобильного дифференциала
- •Планетарные механизмы
- •Рекомендуемая основная литература
- •Рекомендуемая дополнительная литература
- •Содержание
Основные определения курса тмм
Машина
По мере развития машин содержание термина "машина" изменялось. Для современных машин дадим следующее определение:
Машина есть устройство, создаваемое человеком для преобразования энергии, материалов и информации с целью облегчения физического и умственного труда, увеличения его производительности и частичной или полной замены человека в его трудовых и физиологических функциях.
Классификация машин
1.Энергетические машины (электродвигатели, ДВС, компрессоры и т.д.);
2.Транспортные машины (краны, конвейеры, автомобили и т.д.);
3.Технологические машины (металлорежущие станки, полиграфические, горнодобывающие, швейные машины и др.);
4.ЭВМ.
Механизм
Существует несколько определений. Дадим одно из них.
Механизм есть система тел, предназначенная для преобразования движения одного или нескольких твердых тел в требуемые движения других тел.
Все механизмы можно разделить на плоские и пространственные.
У плоского механизма точки его звеньев описывают траектории, лежащие в параллельных плоскостях.
У пространственного механизма точки его звеньев описывают неплоские траектории или траектории, лежащие в пересекающихся плоскостях.
Классификация механизмов (по конструктивным признакам)
1.Рычажные механизмы (рис.1.1).
Рычажные механизмы являются основными в различных машинах. Например, в строгальных станках они выполняют основную рабочую операцию - строгание заготовки, преобразуя вращательное движение вала в возвратно-поступательное движение резца; в ДВС - преобразуют возвратно-поступательное движение поршней во вращательное движение главного вала, в штамповочной машине - осуществляют срез материала.
а). б). в).
Рис.1.1
Среди этого типа механизмов наибольшее распространение получили плоские рычажные четырехзвенные механизмы (рис.1.1,а, б, в). На рис.1.1,а показан кривошипно-ползунный механизм, который используется для преобразования вращательного движения кривошипа ОА в возвратно-поступательное движение ползуна В. Ползун и кривошип соединяются с помощью звена АВ (шатуна), совершающего плоскопараллельное движение. Механизм, показанный на рис.1.1,б, называют кривошипно-коромысловым механизмом. Его ведущее звено О1А кривошип совершает полнооборотное вращение, звено АВ шатун - плоскопараллельное движение, а ведомое звено ВО2 коромысло – неполнооборотное вращение. На рис.1.1,в показан кривошипно-кулисный механизм, состоящий из кривошипа О1А, кулисы АО2, представляющей собой подвижное направляющее звено, по которому движется кулисный камень.
2.Кулачковые механизмы (рис. 1.2).
Кулачковые механизмы образуются путем силового замыкания кулачка и толкателя. Кулачок 1 обычно представляет собой диск, профиль которого очерчен определенной кривой, которая задает движение толкателю 2. Для уменьшения потерь на трение толкатель снабжают цилиндрическим роликом.
Механизмы используют для преобразования вращательного (рис.1.2,а) или возвратно-поступательного (рис.1.2,б) движения кулачка в возвратно-поступательное движение толкателя. Применяют также сложные пространственные механизмы (рис.1.2,в).
Используются: в строгальных и долбежных станках для поперечного перемещения стола с обрабатываемой деталью, в ДВС - для открытия клапанов (распределительный вал).
а). б). в).
Рис.1.2