3.1.1 Покращення
При виборі опорного елемента з даного діапазону випадковим чином гірший випадок стає дуже малоймовірним і очікуваний час виконання алгоритму сортування - O (n lg n).
Вибирати опорним елементом середній з трьох (першого, середнього і останнього елементів). Такий вибір також спрямований проти гіршого випадку.
Щоб уникнути досягнення небезпечної глибини рекурсії в гіршому випадку (або при наближенні до нього) можлива модифікація алгоритму, що усуває одну гілку рекурсії: замість того, щоб після поділу масиву викликати рекурсивну процедуру поділу для обох знайдених підмасива, рекурсивний виклик робиться тільки для меншого підмасива, а більший обробляється в циклі в межах цього ж виклику процедури. З точки зору ефективності в середньому разі різниці практично немає: накладні витрати на додатковий рекурсивний виклик і на організацію порівняння довжин підмасива і циклу - приблизно одного порядку. Зате глибина рекурсії ні за яких обставин не перевищить log2n, а в гіршому випадку виродженого поділу вона взагалі буде не більше 2 - вся обробка пройде в циклі першого рівня рекурсії.
Розбивати масив не на дві, а на три частини (див. Dual Pivot Quicksort).
3.1.2 Переваги:
Один з найбільш швидкодіючих (на практиці) з алгоритмів внутрішнього сортування загального призначення.
Простий в реалізації.
Потребує лише додаткової пам'яті для своєї роботи. (Не покращений рекурсивний алгоритм у гіршому випадку пам'яті)
Добре поєднується з механізмами кешування і віртуальної пам'яті.
Існує ефективна модифікація (алгоритм Седжвіка) для сортування рядків - спочатку порівняння з опорним елементом тільки за нульовим символу рядка, далі застосування аналогічної сортування для «більшого» і «меншого» масивів теж за нульовим символу, і для «рівного» масиву по вже першого символу .
3.1.3 Недоліки:
Сильно деградує за швидкістю
(до
)
при невдалих виборах опорних елементів,
що може трапитися при невдалих вхідних
даних. Цього можна уникнути, використовуючи
такі модифікації алгоритму, як Introsort,
або вероятностно, вибираючи опорний
елемент випадково, а не фіксованим
чином.
Наївна реалізація алгоритму
може привести до помилки переповнення
стека, так як їй може знадобитися зробити
вкладених рекурсивних викликів. У
покращених реалізаціях, в яких рекурсивний
виклик відбувається тільки для сортування
меншою з двох частин масиву, глибина
рекурсії гарантовано не перевищить
.
Нестійкий - якщо потрібна стійкість, доводиться розширювати ключ.
Розглянемо роботу процедури для масиву a [0] ... a [6] і опорного елемента p = a [3].

Рисунок 5.8 – Приклад роботи процедури сортування
3.2 Сортування вставками
У функцію InsertionSort передається масив A і довжина списку n. Розглянемо i-ий прохід (1 <i <n-1). Підсписок від A [0] до A [i-1] вже відсортований за зростанням. Як вставляється (TARGET) виберемо елемент A [i] і будемо просувати його до початку списку, порівнюючи з елементами A [i-1], A [i-2] і т.д. Перегляд закінчується на елементі A [j], який менше або дорівнює TARGET або знаходиться на початку списку (j = 0). У міру просування до початку списку кожний елемент зсувається вправо (A [j] = A [j-1]). Коли відповідне місце для A [i] буде знайдено, цей елемент вставляється в точку j.
Сортування вставками вимагає фіксованого числа проходів. На n-1 проходах вставляються елементи від A [1] до A [n-1]. На i-му проході вставки виробляються в підсписок A [0]-A [i] і вимагають в середньому i / 2 порівнянь. Загальне число порівнянь єдине:
(3.2)
На відміну від інших методів, сортування вставками не використовує обміни. Складність алгоритму вимірюється числом порівнянь і дорівнює O (n2). Найкращий випадок - коли початковий список вже відсортований. Тоді на i-му проході вставка здійснюється в точці A [i], а загальне число порівнянь одно n-1, тобто складність становить O (n). Найгірший випадок виникає, коли список відсортований за спаданням. Тоді кожна вставка відбувається в точці A [0] і вимагає i порівнянь. Загальне число порівнянь одно n (n-1) / 2, тобто складність становить O (n2).
В принципі, алгоритм сортування вставками можна значно прискорити. Для цього слід не зрушувати елементи по одному, як це продемонстровано в наведеному вище прикладі, а знаходити потрібний елемент за допомогою бінарного пошуку, описаного в попередньому номері (тобто, в циклі розбиваючи список на дві рівні частини, поки в списку не залишиться один- два елементи), а для зсування використовувати функції копіювання пам'яті. Такий підхід дає досить високу продуктивність на невеликих масивах. Основним вузьким місцем у даному випадку є саме копіювання пам'яті. Поки що обсяг копійованих даних (близько половини розміру масиву) можна порівняти з розміром кеша процесора 1 рівня, продуктивність цього методу досить висока. Але через множинних непродуктивних повторів копіювання, цей спосіб менш кращий, ніж метод «швидкої» сортування, описаний в наступному розділі. Цей же метод можна рекомендувати у разі щодо статичного масиву, в який зрідка проводиться вставка одного-двох елементів.
3.3 Сортування вибором
Оцінимо часову складність даного методу, використовуючи в якості основної операції операцію порівняння.
Для пошуку мінімального елемента в кожному проході потрібно виконати: n-1, n-2, 1 операцій порівняння, тобто всього n (n-1) / 2 операцій порівняння. Отже, обчислювальна складність даного методу O (n2). Причому час сортування не залежить від вихідного порядку елементів.

Рисунок 3.1 – Алгоритм сортування вибором
3.4 Метод швидкого сортування
Загальний аналіз ефективності «швидкої» сортування досить важкий. Буде краще показати її обчислювальну складність, підрахувавши число порівнянь при деяких ідеальних припущеннях. Припустимо, що n - ступінь двійки, n = 2k (k = log2n), а центральний елемент розташовується точно посередині кожного списку і розбиває його на два підсписки приблизно однакової довжини.
При першому скануванні проводиться n-1 порівнянь. В результаті створюються два підсписки розміром n / 2. На наступній фазі обробка кожного підсписки вимагає приблизно n / 2 порівнянь. Загальне число порівнянь на цій фазі дорівнює 2 (n / 2) = n. На наступній фазі обробляються чотири підсписки, що вимагає 4 (n / 4) порівнянь, і т.д. Зрештою процес розбиття припиняється після k проходів, коли вийшли підсписки містять по одному елементу. Загальне число порівнянь приблизно дорівнює n + 2 (n / 2) + 4 (n / 4) + ... + N (n / n) = n + n + ... + N = n * k = n * log2n
Для списку загального вигляду обчислювальна складність «швидкої» сортування дорівнює O (n log2 n). Ідеальний випадок, який ми тільки що розглянули, фактично виникає тоді, коли масив вже відсортований за зростанням. Тоді центральний елемент потрапляє точно в середину кожного підсписки.
Якщо масив відсортований за спаданням, то на першому проході центральний елемент виявляється на середині списку і змінюється місцями з кожним елементом як у першому, так і в другому підсписки. Результуючий список майже відсортований, алгоритм має складність порядку O (n log2n).(рис. 3.2.1)

«Рисунок 3.2.1−опис методу швидкого сортування»
Найгіршим сценарієм для «швидкої» сортування буде той, при якому центральний елемент весь час потрапляє в одноелементні подспісок, а всі інші елементи залишаються в другому підсписки. Це відбувається тоді, коли центральним завжди є найменший елемент. Розглянемо послідовність 3, 8, 1, 5, 9.
На першому проході проводиться n порівнянь, а більший подспісок містить n-1 елементів. На наступному проході цей подспісок вимагає n-1 порівнянь і дає подспісок з n-2 елементів і т.д. Загальне число порівнянь одно: n + n-1 + n-2 + ... + 2 = n (n +1) / 2 - 1
Складність найгіршого випадку дорівнює O (n2), тобто не краще, ніж для сортувань вставками і вибором. Однак цей випадок є патологічним і малоймовірний на практиці. Загалом, середня продуктивність «швидкої» сортування вище, ніж у всіх розглянутих нами сортувань.
Алгоритм QuickSort вибирається за основу в більшості універсальних сортують утиліт. Якщо ви не можете змиритися з продуктивністю найгіршого випадку, використовуйте пірамідальну сортування - більш стійкий алгоритм, складність якого дорівнює O (n log2n) і залежить тільки від розміру списку.
