Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
доплер.doc
Скачиваний:
47
Добавлен:
13.04.2015
Размер:
771.07 Кб
Скачать

Лабораторная работа Изучение эффекта Доплера в акустике.

Цель работы:

Исследование зависимости доплеровского сдвига частоты от частоты источника звука и от скорости движения отражающей поверхности.

Приборы и принадлежности:

  1. Генератор звуковой (ГЗ-44).

  2. Генератор звуковой школьный (ГЗШ-63).

  3. Осциллограф С-11 (138049).

  4. Источник тока ИЭПП-2.

  5. Регулятор напряжения (РНШ).

  6. Излучатель высокочастотный (2ГД-36, мощность 1-2Вт)

Двойной эффект Доплера.

В 1842г. К.Доплер (австрийский физик и астроном) установил, что частота воспринимаемого звука зависит как от скорости движения источника (относительно среды) так и от скорости движения наблюдателя: она выше частоты источника 0, если наблюдатель и источник сближаются и ниже 0, если они удаляются. В этом состоит эффект Доплера.

При одновременном движении источника и приемника звука частота, фиксируемая приемником , определяется по формуле:

(1)

где - скорость звука в среде,

- скорости движения приемника и источника,

, - углы, образуемые векторами скорости источника и приемника с вектором, соединяющим приемник и источник.

Если перемещение источника и наблюдателя происходит вдоль соединяющей их прямой, то cosи формула 1 принимает вид:

(2)

Верхние знаки в формулах (1) и (2) используются, когда приемник и источник сближаются, нижние - отдаляются.

Разновидностью эффекта Доплера является, так называемый, двойной эффект Доплера - изменение частоты волн при отражении их от движущихся тел, поскольку отражающий объект можно рассматривать как приемник, а затем как переизлучатель волн.

Определим частоту доплеровского сдвига, когда приемник (микрофон - мкр рис.1) и излучатель (изл) покоятся, а движется отражающая звук пластинка (пл) со скоростью (сближение;cos 1). На первом этапе пластинка играет роль приемника, движущегося со скоростью ()пр, а источник звука покоится (). Используя формулу (2) получим частоту волн попадающих на пластинку ()пр

)пр=(3)

На втором этапе пластинка отражает принятые ()пр волны и является источником звука, который перемещается со скоростью навстречу микрофону.

Частота волн () фиксируемая микрофоном, согласно формуле (2)

(4)

Подставляя в (4) формулу (3) получим

(5)

Теперь определим, на сколько изменилась частота (доплеровский сдвиг частот).

Если падающая на пластину и отраженная от пластины волны накладываются друг на друга (как в рассмотренном случае), то наблюдается суперпозиция волн, частоты которых мало отличаются друг от друга и это приводит к появлению биений. Частота биений равна разности частот падающей и отраженной волны (). Т.о. определив частоту биений фиксируемых микрофоном и зная скорость движения отражающей пластинки, можно определить как доплеровский сдвиг частоты, так и частоту звуковых волн отраженных подвижной пластинкой и принятой микрофоном.

(6)

Экспериментальная установка.

Схема экспериментальной установки представлена на рисунке 2. Источником звука является излучатель высокочастотный 1, преобразующий электрические колебания, создаваемые звуковым генератором 2 в звуковые волны. Звук отражается от пластин 3, которые укреплены на вращающейся платформе 4. Частоту вращения платформы можно изменять в широких пределах, меняя напряжение, подаваемое на обмотки двигателя 5 от регулятора напряжения 6 (РНШ, 0-60В).

В микрофон 7, расположенный рядом с излучателем, поступают звуковые волны непосредственно от излучателя частотой и волны, отраженные от пластин 3. Поступающий в микрофон сигнал усиливается (источник постоянного тока). Причем звуковой сигнал, отраженный от вращающихся пластин, попадает на микрофон лишь в короткие (по сравнению с периодом вращения платформы) промежутки времени, соответствующие определенному относительному положению пластин, излучателя и микрофона.

Между излучателем и микрофоном устанавливается войлочная прокладка 9 для уменьшения мощности прямого звука, попадающего в микрофон непосредственно от излучателя.

Микрофон подключен к осциллографу 10. Скорость движения пластин невелика, поэтому доплеровский сдвиг частоты много меньше частоты. На экране осциллографа наблюдается периодически появляющаяся картина биений с частотой, являющаяся результатом сложения двух звуковых волн, попадающих в микрофон в определенные моменты времени.

Скорость сближения пластин и громкоговорителя

где R - расстояние от оси вращения до середины пластин,

- частота вращения пластин.

Выполнение работы.

ВНИМАНИЕ: Приборы включать в электрическую сеть можно только после проверки электрической цепи преподавателем.