
- •Учебное пособие по аэродинамике
- •Классификация летательных аппаратов
- •Атмосфера земли
- •Физические свойства воздуха
- •Параметры воздуха
- •Стандартная атмосфера
- •Тема 1.2. Основные законы движения газов Понятие воздушного потока
- •Пограничный слой
- •Основные законы аэродинамики
- •Закон Бернулли.
- •Тема 1.3. Аэродинамические силы Основные части самолета
- •Геометрические характеристики крыла
- •Форма крыла в плане
- •Геометрические характеристики крыла в плане
- •Обтекание тел воздушным потоком
- •Полная аэродинамическая сила
- •Подъемная сила крыла
- •Лобовое сопротивление крыла
- •Аэродинамическое качество крыла
- •Поляра крыла
- •Аэродинамические силы летательного аппарата
- •Механизация крыла
- •Закрылки.
- •А) поворотные; б) щелевые поворотные; в) выдвижные; г) двухщелевые; д) двухзвеньевые.
- •Предкрылки.
- •Тема 1.4. Силовая установка самолета Общая характеристика воздушных винтов
- •Геометрические характеристики винта
- •Скорости движения элементов лопасти
- •Угол атаки элементов лопасти
- •Аэродинамические силы лопасти и винта
- •Аэродинамические силы винта
- •И крутящий момент двигателя
- •Соответствие винта двигателю
- •Режимы работы винта
- •Характеристики силовой установки
- •В зависимости от скорости полета
- •Винты изменяемого шага
- •Тема 1.5. Основы аэродинамики больших скоростей Понятие звука
- •Особенности движения сжимаемого газа
- •Волновое сопротивление
- •Зависимость аэродинамических коэффициентов от числа Маха
- •Аэродинамические формы скоростного самолета
- •Раздел II динамика полета
- •Тема 2.1. Режимы горизонтального полета
- •В горизонтальном полете
- •Характеристики горизонтального полета
- •Влияние высоты на горизонтальный полет.
- •Влияние угла атаки на горизонтальный полет.
- •Кривые Жуковского
- •Первые и вторые режимы горизонтального полета
- •Наивыгоднейшие режимы полета
- •Тема 2.2. Равновесие и балансировка ла Понятия и условия равновесия
- •Центр тяжести самолета
- •Центровка самолета
- •Средняя аэродинамическая хорда крыла
- •Продольное равновесие и балансировка самолета
- •Поперечная балансировка
- •Путевая балансировка
- •Тема 2.3. Устойчивость самолета Понятие устойчивости
- •Продольная устойчивость самолета
- •Поперечная устойчивость самолета
- •Поперечная устойчивость на больших углах атаки
- •Путевая устойчивость самолета
- •Тема 2.4. Управляемость самолета Понятие управляемости
- •Продольная управляемость
- •Поперечная управляемость
- •Путевая управляемость
- •Боковая устойчивость и управляемость самолета
- •Аэродинамическая компенсация
- •Компенсации
- •Тема 2.5. Режим подъема самолета
- •Характеристики самолета при подъеме
- •Угол и вертикальная скорость подъема
- •Барограмма подъема и потолок самолета
- •Поляра скоростей подъема самолета
- •Тема 2.6. Режим планирования самолета
- •Характеристики планирования
- •Поляра скоростей планирования
- •Влияние ветра на планирование
- •Тема 2.7. Виражи и развороты самолета Аэродинамические перегрузки
- •Понятие виража самолета
- •Правильный вираж
- •Перегрузки на вираже
- •Скорость, потребная для виража
- •Тяга и мощность, потребные для виража
- •Радиус и время виража
- •Управление самолетом на правильном вираже
- •Спираль
- •Тема 2.8. Режим взлета самолета
- •Элементы взлета
- •Взлетные характеристики самолета
- •Влияние эксплуатационных факторов
- •Тема 2.9. Режим посадки самолета
- •Элементы посадки
- •Посадочные характеристики самолета
- •Влияние эксплуатационных факторов
Влияние высоты на горизонтальный полет.
Скорость полета
измеряется прибором (указателем
скорости, cм.
Рисунок 2.7 ), чувствительный элемент
которого (манометрическая коробка)
реагирует на изменение скоростного
напора.
Прибор измеряет не скорость полета, а
значение скоростного напора.
Скорость, соответствующая скоростному напору q, называется приборной скоростью Vпр..
Скорость самолета относительно воздушной среды называется истинной скоростью Vист..
Поскольку плотность
воздуха ρ
изменяется с высотой полета, то одному
и тому же скоростному напору q=
при различных высотах соответствуют
различные значения истинной скорости
Vист
.
Прибор градуируется
в стандартных условиях у земли. Поэтому
значение приборной скорости соответствует
скоростному напору
=
.
Чтобы установить связь между Vпр и Vист, следует воспользоваться равенством:
=
,
где ρ0 - плотность воздуха у земли;
ρH - плотность воздуха на текущей высоте H .
Из равенства следует:
Vист=
Vпр,где
- отношение плотности
на высоте к плотности у земли.
Это отношение называется высотной поправкой.
В таком же соотношении находятся потребные скорости горизонтального полета на текущей высоте VH и у земли V0:
VH=
V0=
V0
.
Таким образом, на данном угле атаки истинная потребная скорость Vпотр с увеличением высоты полета увеличивается, в то время как приборная скорость от высоты не зависит а зависит только от угла атаки и коэффициента Су.
С увеличением высоты полета уменьшение плотности r приводит к увеличению потребной скорости полета пропорционально высотной поправке.
Потребная сила тяги от высоты полета не зависит, так как Рп=Х, но сила лобового сопротивления при увеличении высоты горизонтального полета, на данной приборной скорости, не изменяется, следовательно, РH=Р0 .
Потребная мощность с увеличением высоты полета увеличивается пропорционально потребной скорости: Nн=PнVн; N0=P0V0.
Разделив первое
уравнение на второе, получим: Nпотр/N0=
PнVн/
P0V0=.
Тогда Nн=
N0.
Следовательно, так же, как скорость горизонтального полета, потребная мощность с увеличением высоты возрастает пропорционально высотной поправке.
Влияние угла атаки на горизонтальный полет.
Если изменять угол атаки, будет изменяться коэффициент подъемной силы Су. Чем меньше Су, тем больше должна быть скорость полета, и наоборот.
При максимальном коэффициенте Cymax ,т.е. на критическом угле атаки Vпотр достигает минимального теоретического значения:
Vmin
=.
Полет на Vmin не допустим из-за появления тряски, нарушения устойчивости и возможности перехода самолета в штопор. Поэтому в практических условиях вводится ограничение по минимально-допустимой скорости Vminдоп, обеспечивающей безопасность полета.
На минимальном угле атаки αCxmin, когда коэффициент лобового сопротивления Cx минимальный, можно достичь максимальной скорости горизонтального полета. Из уравнений движения можно вывести формулу максимальной скорости горизонтального полета:
Vmax=.
Формула показывает, что максимальная скорость достигается при работе двигателя на максимальном режиме ( при максимальной потребной тяге Pmax).
На практике
Vmax
имеет ограничение по сравнению с
теоретически достижимой, так как при
максимальном скоростном напоре
конструкция летательного аппарата
испытывает действие больших нагрузок,
опасных для прочности.
Вывод: Каждому углу атаки при данной полетной массе и высоте полета соответствуют определенные скорость, тяга и мощность горизонтального полета.
Эти зависимости изображаются с помощью графиков - кривых Жуковского.