
- •Основные понятия статистики
- •Предмет и метод статистики
- •Статистический показатель: понятие, атрибуты, виды.
- •Сущность и задачи статистического наблюдения
- •Формы, виды и способы статистического наблюдения.
- •7.Статистическая отчетность как форма наблюдения
- •8. Достоверность статистических данных и ошибки статистического наблюдения
- •9. Принципы и правила организации и проведения статистического наблюдения.
- •10. Статистическая сводка и ее место в статистическом анализе
- •11. Статистические группировки и их значение в практическом анализе, порядок построения группировок.
- •12. Виды статистических группировок
- •13. Простые и сложные группировки
- •14. Первичные и вторичные группировки
- •15. Дискретные и интервальные группировки
- •16. Типологические группировки
- •17. Структурные группировки
- •18. Аналитические группировки
- •19. Статистические ряды распределения
- •Кумулятивные ряды распределения – ряды распределения, которые содержат один или оба следующих элемента:
- •20. Статистические таблицы: виды и принципы построения
- •21. Абсолютные показатели, их виды.
- •22. Относительные статистические величины и их виды
- •23. Относительные показатели динамики, показатели плана и реализации плана, связь между ними.
- •24.Относительные показатели сравнения и интенсивности.
- •25.Относительные показатели структуры и координации уровня экономического сравнения.
- •26. Принципы построения относительных показателей. Системы статистических показателей.
- •28. Средняя арифметическая и ее свойства
- •29. Виды степенных средних. Правило мажорантности.
- •30. Медиана и ее практическое значение
- •31. Мода и ее практическое значение
- •32. Показатели вариации и способы их расчета
- •1) Относительный размах вариации:
- •2) Относительное отклонение по модулю:
- •3) Коэффициент вариации
- •33. Правило сложения дисперсий
- •34. Показатель симметричности распределения
- •35. Показатель островершиности распределения
- •36. Нормальное распределение и его свойства
- •38. Сопоставимость статистических величин в рядах динамики
- •37. Понятие о статистических рядах динамики
- •39. Статистические показатели динамики
- •40. Средние показатели ряда динамики
- •41.Анализ закономерностей изменения уровней ряда динамики
- •43. Аналитическое выравнивание динамических рядов
- •44. Анализ сезонных колебаний
- •45. Статистические методы прогнозирования
- •46. Статистические индексы и их виды
- •47. Индивидуальные и сводные индексы
- •48. Агрегатные индексы и их виды
- •49. Средние индексы на основе индивидуальных индексов
- •50. Индексный метод анализа факторов
- •51. Взаимосвязь между индексами переменного, постоянного состава и структурных сдвигов.
- •52. Классификация связей в статистике
- •53. Определение тесноты корреляционной связи
- •54. Понятие регрессии
- •55. Расчет параметров линейного уравнения регрессии мнк
- •56. Понятие о выборочном наблюдении
- •57. Основные способы отбора
- •58. Ошибка выборочного наблюдения при различных способах отбора
- •59. Определение необходимой численности выборки
- •60.Малая выборка. Проверка статистических гипотез.
52. Классификация связей в статистике
Признаки, которыми характеризуются единицы совокупности, могут быть взаимосвязанными. Взаимосвязанные признаки выступают в одной из ролей:
•роли признака-результата (Y);
•роли признака-фактора, значения которого определяют значение признака-результата (X).
Связи классифицируют по степени тесноты, направлению, форме, числу факторов.
1) По степени тесноты связи делят на статистические и функциональные.
Статистическая (стохастическая) связь – это такая связь между признаками, при которой для каждого значения признака-фактора X признак-результат Y может в определенных пределах принимать любые значения с некоторыми вероятностями; при этом его статистические (массовые) характеристики (например, среднее значение) изменяются по определенному закону.
Y=f(X, и),
где Y – фактическое значение результативного признака;
f(X) – часть результативного признака, сформировавшаяся под воздействием фактора X (или множества факторов: Y=f(X1,...,Xm);
и – случайная составляющая, часть результативного признака, возникшая вследствие действия прочих (неучтенных) факторов, а также ошибок измерения признаков.
Корреляционная связь – частный случай статистической связи. При корреляционной связи с изменением значения признака X среднее значение признака Y закономерно изменяется, в то время как в каждом отдельном случае признак Y (с различными вероятностями) может принимать множество различных значений.
Функциональная связь – такая связь, когда каждому возможному значению признака-фактора X соответствует одно или несколько строго определенных значений результативного признака Y. Она имеет место, когда все факторы, действующие на результативный признак, известны и учтены в модели и ошибки измерения отсутствуют.
Y=f(X).
2) По направлению связи делятся на прямые и обратные.
При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора.
При обратной связи направление изменения результативного признака противоположно направлению изменения признака-фактора.
3) По форме связи (виду функции f) связи делят на линейные (прямолинейные) и нелинейные (криволинейные) связи.
Линейная связь отображается прямой линией; криволинейная – кривой (параболой, гиперболой и т. п.).
4) По количеству факторов, действующих на результативный признак, связи подразделяют на однофакторные (парные) и многофакторные связи.
53. Определение тесноты корреляционной связи
Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.
Виды зависимостей:
парная корреляция – связь между двумя признаками (между двумя факторными либо между факторным и результативным признаком)
частная корреляция – зависимость между результативным и одним факторным признаком при фиксированном значении других факторных признаков
множественная корреляция – зависимость результативного и двух и более факторных признаков.
Корреляционный анализ имеет своей задачей количественное определение тесноты связи между двумя признаками.
Теснота связи количественно выражается величиной коэффициентов корреляции.
Теснота связи при линейной зависимости измеряется с помощью линейного коэффициента корреляции:
Линейный коэффициент корреляции изменяется в пределах от -1 до+1.
Теснота связи при криволинейной зависимости измеряется с помощью корреляционного отношения. Различают эмпирическое и теоретическое корреляционное отношение.
Эмпирическое
корреляционное отношение: