
- •Конспект лекций
- •Оглавление
- •От авторов
- •Введение
- •Лекция 1. Электростатика в вакууме и веществе. Электрическое поле
- •1.1. Предмет классической электродинамики
- •1.2. Электрический заряд и его дискретность. Теория близкодействия
- •1.3. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей
- •1.3.1. Границы применимости закона Кулона
- •1.3.2. Принцип суперпозиции электрических полей. Электрическое поле диполя
- •1.4. Поток вектора напряженности электростатического поля
- •1.5. Теорема Остроградского-Гаусса для электрического поля в вакууме
- •1.6. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля
- •1.7. Энергия электрического заряда в электрическом поле
- •1.8. Потенциал и разность потенциалов электрического поля. Связь напряженности электрического поля с его потенциалом
- •1.8.1. Потенциал и разность потенциалов электрического поля
- •1.8.2. Связь напряженности электрического поля с его потенциалом
- •1.9. Эквипотенциальные поверхности
- •1.10. Основные уравнения электростатики в вакууме
- •1.11.2. Поле бесконечно протяженной, однородно заряженной плоскости
- •1.11.3. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
- •1.11.4. Поле заряженной сферической поверхности
- •1.11.5. Поле объёмно заряженного шара
- •Лекция 2. Проводники в электрическом поле
- •2.1. Проводники и их классификация
- •2.2. Электростатическое поле в полости идеального проводника и у его поверхности. Электростатическая защита. Распределение зарядов в объеме проводника и по его поверхности
- •2.3. Электроемкость уединенного проводника и ее физический смысл
- •2.4. Конденсаторы и их емкость
- •2.4.1. Емкость плоского конденсатора
- •2.4.2. Емкость цилиндрического конденсатора
- •2.4.3. Емкость сферического конденсатора
- •2.5. Соединения конденсаторов
- •2.5.1. Последовательное соединение конденсаторов
- •2.5.2. Параллельное и смешанное соединения конденсаторов
- •2.6. Классификация конденсаторов
- •Лекция 3. Статическое электрическое поле в веществе
- •3.1. Диэлектрики. Полярные и неполярные молекулы. Диполь в однородном и неоднородном электрических полях
- •3.1.1. Диполь в однородном электрическом поле
- •3.1.2. Диполь в неоднородном внешнем электрическом поле
- •3.2. Свободные и связанные (поляризационные) заряды в диэлектриках. Поляризация диэлектриков. Вектор поляризации (поляризованность)
- •3.4. Условия на границе раздела двух диэлектриков
- •3.5. Электрострикция. Пьезоэлектрический эффект. Сегнетоэлектрики, их свойства и применение. Электрокалорический эффект
- •3.6. Основные уравнения электростатики диэлектриков
- •Лекция 4. Энергия электрического поля
- •4.1. Энергия взаимодействия электрических зарядов
- •4.2. Энергия заряженных проводников, диполя во внешнем электрическом поле, диэлектрического тела во внешнем электрическом поле, заряженного конденсатора
- •4.3. Энергия электрического поля. Объемная плотность энергии электрического поля
- •4.4. Силы, действующие на макроскопические заряженные тела, помещенные в электрическое поле
- •Лекция 5. Постоянный электрический ток
- •5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
- •5.2. Основные характеристики постоянного электрического тока: величина /сила/ тока, плотность тока. Сторонние силы
- •5.3. Электродвижущая сила (эдс), напряжение и разность потенциалов. Их физический смысл. Связь между эдс, напряжением и разностью потенциалов
- •Лекция 6. Классическая электронная теория проводимости металлов. Законы постоянного тока
- •6.1. Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Ома в дифференциальной и интегральной формах
- •6.2. Электрическое сопротивление проводников. Изменение сопротивления проводников от температуры и давления. Сверхпроводимость
- •6.3. Соединения сопротивлений: последовательное, параллельное, смешанное. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.3.1. Последовательное соединение сопротивлений
- •6.3.2. Параллельное соединение сопротивлений
- •6.3.3. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
- •6.5. Закон Джоуля-Ленца в дифференциальной и интегральной формах
- •6.6. Энергия, выделяющаяся в цепи постоянного тока. Коэффициент полезного действия (кпд) источника постоянного тока
- •Лекция 7. Электрический ток в вакууме, газах и жидкостях
- •7.1. Электрический ток в вакууме. Термоэлектронная эмиссия
- •7.2. Вторичная и автоэлектронная эмиссия
- •7.3. Электрический ток в газе. Процессы ионизации и рекомбинации
- •7.3.1. Несамостоятельная и самостоятельная проводимость газов
- •7.3.2. Закон Пашена
- •7.3.3. Виды разрядов в газах
- •7.3.3.1. Тлеющий разряд
- •7.3.3.2. Искровой разряд
- •7.3.3.3. Коронный разряд
- •7.3.3.4. Дуговой разряд
- •7.4. Понятие о плазме. Плазменная частота. Дебаевская длина. Электропроводность плазмы
- •7.5. Электролиты. Электролиз. Законы электролиза
- •7.6. Электрохимические потенциалы
- •7.7. Электрический ток через электролиты. Закон Ома для электролитов
- •7.7.1. Применение электролиза в технике
- •Лекция 8. Электроны в кристаллах
- •8.1. Квантовая теория электропроводности металлов. Уровень Ферми. Элементы зонной теории кристаллов
- •8.2. Явление сверхпроводимости с точки зрения теории Ферми-Дирака
- •8.3. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n – переходе
- •8.3.1. Собственная проводимость полупроводников
- •8.3.2. Примесные полупроводники
- •8.4. Электромагнитные явления на границе раздела сред
- •8.4.1. P-n – переход
- •8.4.2. Фотопроводимость полупроводников
- •8.4.3. Люминесценция вещества
- •8.4.4. Термоэлектрические явления. Закон Вольта
- •8.4.5. Эффект Пельтье
- •8.4.6. Явление Зеебека
- •8.4.7. Явление Томсона
- •Заключение
- •Библиографический список Основной
- •Дополнительный
2.5.2. Параллельное и смешанное соединения конденсаторов
При
параллельном соединении обкладки
конденсаторов соединяются в группы,
причем одна из обкладок каждого
конденсатора соединяется в одну группу,
а другая – в другую (рис. 2.8).
В этом случае напряжение батареи равно напряжению отдельно взятого конденсатора. Заряд каждого конденсатора пропорционален его емкости, заряд батареи равен сумме зарядов каждого конденсатора, т.е.
;
,
где
;
;
;
Таким образом, имеем
или
.
(2.28)
Следовательно, при параллельном соединении конденсаторов емкость батареи равна сумме емкостей включенных в нее конденсаторов.
Если емкости конденсаторов, включенных в батарею, параллельно равны:
,
то
, (2.29)
т. е. при параллельном соединении n одинаковых конденсаторов емкость батареи в n раз больше емкости отдельно взятого конденсатора.
Сравнивая два типа соединения конденсаторов, можно установить, что при переключении n конденсаторов с параллельного соединения на последовательное соединение емкость батареи уменьшается в n раз.
Так как
;
,
то
,
а
.
(2.30)
В этом случае напряжение на батареи в n раз больше, чем при параллельном соединении
.
(2.31)
Переключение
конденсаторов батареи с параллельного
соединения на последовательное
соединение применяется в импульсных
генераторах напряжения.
Комбинируя вышеперечисленные виды соединений, можно получить различные виды смешанного соединения (рис. 2.9).
При смешанных соединениях общую емкость находят путем выделения отдельных групп параллельного и последовательного соединений, а затем каждую из них рассматривают как отдельно взятый конденсатор соответствующей емкости.
Надо отметить, что все вышеприведенные рассуждения справедливы для идеальных конденсаторов.
В действительности все конденсаторы обладают "утечкой" (медленным изменением заряда), т.е. они обладают не только емкостью, но и определенным сопротивлением - сопротивлением утечки. Сопротивление утечки и определяет распределение зарядов. Различное сопротивление утечки не позволяет применять последовательное соединение конденсаторов с различными диэлектрическими проницаемостями среды. Это связано с тем, что при последовательном соединении конденсаторов с различными диэлектрическими проницаемостями среды напряжение на батарее может оказаться на одном из конденсаторов, что приведет к его пробою. Как правило, последовательное соединение конденсаторов применяется в цепях переменного тока.
2.6. Классификация конденсаторов
В настоящее время используется большое количество конденсаторов, которые классифицируются по важнейшим признакам:
1. По характеру изменения емкости (конденсаторы постоянной емкости, переменной емкости, подстроечные конденсаторы, вариконы).
2. По материалу диэлектрика (воздушные, бумажные, слюдяные, керамические, электролитические и др.).
3. По форме пластин (плоские, цилиндрические, дисковые, сферические, трубчатые и др.).
Лекция 3. Статическое электрическое поле в веществе
Диэлектрики. Полярные и неполярные молекулы. Диполь в однородном и неоднородном электрических полях. Свободные и связанные (поляризационные) заряды в диэлектриках. Поляризация диэлектриков. Вектор поляризации (поляризованность). Поле в диэлектриках. Электрическое смещение. Диэлектрическая восприимчивость вещества. Относительная диэлектрическая проницаемость среды. Теорема Остроградского-Гаусса для потока вектора индукции электрического поля. Граничные условия на поверхности раздела "диэлектрик-диэлектрик". Электрострикция. Пьезоэлектрический эффект. Сегнетоэлектрики, их свойства и применение. Электрокалорический эффект. Основные уравнения электростатики диэлектриков.