
- •1.Величины, характеризующие электрическую прочность диэлектрика.
- •2.Основные виды ионизационных процессов в газовом разрядном промежутке. Энергия ионизации и работа выхода.
- •3. Пробой газового промежутка с однородным полем. Закон Пашена.
- •4. Роль барьеров при разряде в промежутке с несимметричным полем при обеих полярностях острого электрода.
- •7. Вольт-секундная характеристика изолятора. Практическое значение вольт-секундных характеристик.
- •8. Как влияет влажность воздуха на разрядные напряжения промышленной частоты и импульсные в однородном и неоднородном полях?
- •10. Меры борьбы с разрядами по поверхности твердого диэлектрика в воздухе. ( см. Лаб. Раб. № 6).
- •11. Процессы в окрестности коронирующих проводов при постоянном напряжении.
- •12. Процессы в окрестности коронирующих проводов при переменном напряжении.
- •13. Расщепленные провода, их преимущества и область применения.
- •15. Особенности развития разряда по загрязненной и увлажненной поверхности изоляторов. Выбор изоляции в районах с загрязненной атмосферой.
- •16. Основные виды внутренней изоляции электроустановок.
- •17. Основные особенности внутренней изоляции.
- •18. Зависимость электрической прочности внутренней изоляции от времени воздействия напряжения.
- •19. Цели и методы регулирования электрических полей во внутренней изоляции.
- •20. Причины старения внутренней изоляции
- •21. Основные особенности трансформаторного масла. Механизм пробоя трансформаторного масла.
- •22. Частичные разряды в газовых включениях при переменном и постоянном напряжениях.
- •23. Механизм повышения электрической прочности маслобарьерной изоляции при применении барьеров, покрытия и изолирования электродов.
- •24.Разряд в масле вдоль поверхности твердой изоляции.
- •25. Механизм теплового пробоя внутренней изоляции.
- •26. Основные характеристики газовой изоляции.
- •27. Перенапряжения в электрических сетях и их виды.
- •28. Общая характеристика защитных мероприятий от перенапряжений
- •29. Характеристики грозовой деятельности и параметры молний
- •30. Устройство и принцип действия трубчатого разрядника.
- •31. Устройство и принцип действия вентильного разрядника.
- •32. Ограничители перенапряжений.
- •33. Защита вращающихся машин от перенапряжений
- •34. Перенапряжения при отключении ненагруженных трансформаторов
- •35. Перенапряжения при отключении ненагруженных линий.
- •35.Основные принципы защиты подстанций от перенапряжений.
- •Библиографический список
28. Общая характеристика защитных мероприятий от перенапряжений
Все мероприятия по защите от перенапряжений делятся на две группы:
превентивные меры снижения перенапряжений;
защита оборудования с помощью коммутационных защитных средств.
Превентивные меры – это предотвращение возникновения перенапряжений или ограничение их величины в месте их возникновения. К таким мерам относятся следующие меры:
применение выключателей с шунтирующими резисторами;
применение выключателей без повторных зажиганий дуги между контактами при их разведении;
применение грозозащитных тросов и молниеотводов;
заземление опор линий электропередачи;
емкостная защита изоляции обмоток трансформаторов и реакторов;
применение емкостных элементов для снижения перенапряжений.
Коммутационные средства защиты от перенапряжений срабатывают и соединяют защищаемую цепь с заземлением в случае, когда перенапряжение в точке их установки превышает некоторую критическую величину. К этим средствам относят разрядники, шунтирующие реакторы с искровым соединением и нелинейные ограничители перенапряжений.
29. Характеристики грозовой деятельности и параметры молний
Для прогноза атмосферных перенапряжений и обоснованного выбора средств защиты необходимо иметь информацию:
о возможном количестве разрядов молнии в защищаемое оборудование или вблизи него;
о токах в разряде молнии.
Первый вопрос решается путем анализа многолетних метеорологических наблюдений и использованием средних характеристик грозовой деятельности. Второй вопрос более сложен из-за сложности прямых измерений токов в разряде молнии, однако многочисленные исследования в этом направлении позволили получить приемлемые статистические данные по параметрам разрядов молнии.
Степень опасности удара молнии определяется прежде всего максимальным значением тока Iм в канале.
Величина падения
напряжения на индуктивных элементах и
величины индуктированных перенапряжений
зависят от скорости нарастания тока
молнии
на фронте волны. Это наиболее важные
параметры тока; кроме того, интеграл
определяет нагрев металлических частей,
а оплавление металлических частей дугой
зависит от величины перенесенного
заряда. Обнаружено, что амплитуда тока
главного разряда практически не зависит
от сопротивления заземления в месте
удара, так что молнию можно считать
источником тока.
В приближенных расчетах используют усредненные распределения Iм и a без учета их различия в первом и последующем импульсах:
- вероятность того, что амплитуда тока в ударе молнии превысит заданное значение Iм в кА (этот подход практически удобнее, чем обычное определение вероятности как доли всех реализаций при значениях случайной величины, меньших заданной);
- вероятность превышения крутизной тока заданного значения a, кА/мкс.
Между амплитудой и крутизной тока существует слабая положительная связь, однако при расчетах их обычно полагают статистически независимыми случайными величинами. В горных районах при тех же вероятностях величины Iм и a примерно вдвое меньше.
Для прогноза
количества ударов молнии в защищаемый
объект используют метеорологическую
характеристику интенсивности грозовой
деятельности – число часов с грозой в
год в данной местности TГ
– и среднее число ударов молнии в 1 км2
поверхности земли за 100 грозочасов,
равное
.
Возвышенные объекты стягивают на себя удары молний с площади большей, чем их собственная площадь. Число прямых ударов в здания высотой H или в открытые распределительные устройства с молниеотводами высотой H в течение года вычисляется с увеличением горизонтальных размеров объекта A и B (в метрах) на 3.5H во все стороны:
,
сомножитель 10-6 производит перевод квадратных метров в квадратные километры для согласования с размерностью N1.
Для линий
электропередачи используют удельный
показатель
,
равный числу прямых ударов молнии на
100 км длины за 100 грозочасов. Считается,
что линия собирает разряды с расстояния
3hср
в обе стороны:
.
Средняя высота подвеса провода hср, м, определяется через высоту подвеса троса или верхнего провода на опоре hоп, м, и стрелу провеса провода f, м, следующим образом:
.
Если линия имеет
длину l,
км, и расположена в местности с числом
грозочасов в год TГ,
то ожидаемое число прямых ударов молнии
в линию за год
можно оценить по следующей формуле:
.