Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ЭТ БИОЛОГИЯ =)))

.docx
Скачиваний:
29
Добавлен:
10.04.2015
Размер:
114.95 Кб
Скачать

Мембраны — структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях.

Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. Каждый тип клеток поэтому характеризуется индивидуальностью, которая определяется в основномгликопротеинами. Разветвленные цепи гликопротеинов, выступающие из клеточной мембраны, участвуют враспознава-нии факторов внешней среды, а также во взаимном узнавании родственных клеток.  В мембранах содержатся также специфические рецепторы, переносчики электронов, преобразователи энергии, ферментные белки. Белки участвуют в обеспечении транспорта определенных молекул внутрь клетки или из нее, осуществляют структурную связь цитоскелета с клеточными мембранами или же служат в качестве рецепторов для получения и преобразования химических сигналов из окружающей среды. Важнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.

Функции биологических мембран следующие:

  1. Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

  2. Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

  3. Выполняют роль рецепторов (получение и преобразование сит-налов из окружающей среды, узнавание веществ клеток и т. д.).

  4. Являются катализаторами (обеспечение примембранных химических процессов).

  5. Участвуют в преобразовании энергии.

БИЛЕТ -13. ОХАРАКТЕРИЗУЙТЕ ЦИТОПЛАЗМАТИЧЕСКИЙ МАТРИКС И КЛЕТОЧНЫУЕ ОРГАНЕЛЛЫ.ЧТО ТАКОЕ ЦИТОЗОЛЬ? ЕСТЬ ЛИ У КЛЕТОК СКЕЛЕТ? КАК ОРГАНИЗОВАН ЦИТОСКИЛЕТ И КАКОВЫ ЕГО КОМПОНЕНТЫ.

Цитоплазматический матрикс (гиалоплазма, цитозоль) – это основное вещество цитоплазмы. Матрикс представляет собой водорастворимую часть цитоплазмы. Содержит около 90 % воды, в которой растворены макромолекулы и молекулярные комплексы (образующие коллоидный раствор), а также малые молекулы и ионы (образующие истинный раствор). В целом матрикс представляет собой жидкий коллоидный раствор – золь. При определенных условиях матрикс переходит в студневидное состояние – гель. Переходы золя в гель и геля в золь – это нормальное состояние физиологически активной клетки; с этими переходами связано движение цитоплазмы, амебоидное движение клеток и изменение их формы.

Функции матрикса: место хранения биологических молекул; среда для протекания биохимических реакций; место хранения включений; транспорт веществ; поддержание постоянства внутриклеточной среды (рН, водно-солевого режима и т.д.).

Цитоплазма эукариотических клеток пронизана трехмерной сеткой из белковых нитей (филаментов), называемой цитоскелетом – это часть цитоплазмы, представленнаяфибриллярными (волоконными) структурами. В зависимости от диаметра филаменты разделяются на три группы: микрофиламенты (6-8 нм), промежуточные волокна (около 10 нм) и микротрубочки (около 25 нм). Все эти волокна представляют собой полимеры, состоящие из субъединиц особых глобулярных белков. Микрофиламенты – это нитевидные структуры, образующие сократимые комплексы. Они пронизывают всю клетку и составляют основу цитоскелета. К ним прикрепляются все остальные органоиды клетки. Расположение микрофиламентов в эктоплазме определяет форму клеток. В состав микрофиламентов входят разнообразные белки.

Микротрубочки представляют собой вытянутые полые цилиндры, сосредоточены в центре клетки, они входят в состав центриолей, органоидов движения, веретена деления, образуют цитоскелет. Вдоль микротрубочек могут перемещаться различные структуры (митохондрии и др.).

Промежуточные филаменты образованы разнообразными белками: прекератин, виментин, десмин и другие. Их функции разнообразны. В частности, из прекератина образуется кератин – основа рогового вещества.

Включения. В состав цитоплазмы входят включения – структуры, которые не являются ее обязательными компонентами. Включения разнообразны по химическому составу, происхождению и функциям. 

Цитоскеле́т — это клеточный каркас или скелет, находящийся в цитоплазме живой клетки. Он присутствует во всех клетках как у эукариот, так и у прокариот. Это динамичная, изменяющаяся структура, в функции которой входит поддержание и адаптация формы клетки ко внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление.

БИЛЕТ-14. КАКОВЫ СТРУККТУРА И РОЛЬ КЛЕТОЧНОГО ЯДРА? РАЗЛИЧИЯ МЕЖДУ ЯДРАМИ КЛЕТОК РАСТЕНИЙ И ЖИВОТНЫХ?

Ядро — это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК). В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. В ядре же синтезированные молекулы РНК подвергаются ряду модификаций, после чего выходят в цитоплазму. Образование  рибосом также происходит в ядре в специальных образованиях -ядрышка От цитоплазмы ядро отделено ядерной оболочкой, образованной цистернами эндоплазматической сети. Ядрышко находится внутри ядра, и не имеет собственной мембранной оболочки, однако хорошо различимо под световым и электронным микроскопом. Основной функцией ядрышка является синтез рибосом. В ядрышке происходит синтез рРНК РНК полимеразой I, ее созревание, сборка рибосомных субчастиц. В ядрышке локализуются белки.

Клеточная стенка у растений есть ( из целлюлозы ) у животных - нет. Клеточная стенка придает растениям дополнительную жесткость и защищает от потерь воды. Вакуоль есть у растений, у животных - нет.  Хлоропласты есть только у растений, в которых образуются органические вещества из неорганических с поглощением энергии. Животные потребляют готовые органические вещества, которые получают с пищей.

БИЛЕТ-15.СТРУКТУРА И ФУНКЦИИ МИТОХОНДРИИ.ВСЕ ЛИ КЛЕТКИ ОБЛАДАЮТ МИТОХОНДРИЯМИ.

Митохондрия — двумембранная гранулярная или нитевидная органелла. Характерна для большинства эукариотических клеток как автотрофов , так и гетеротрофов. Энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии в синтезе молекул АТФ, который происходит за счёт движения электрона по электронно-транспортной цепи белков внутренней мембраны. Покрыта наружной мембраной, которая отграничивает митохондрию от цитоплазмы. Наружная мембрана состоит из слоя белков; в ней присутствуют  ферменты.Межмембранное пространство представляет собой пространство между наружной и внутренней мембранами митохондрии. Внутренняя мембрана образует многочисленные складки — кристы, существенно увеличивающие площадь ее поверхности. Характерной чертой состава внутренней мембраны митохондрий является присутствие в ней особого фосфолипида, содержащего сразу четыре жирные кислоты и делающего мембрану абсолютно непроницаемой. Ещё одна особенность внутренней мембраны митохондрий — очень высокое содержание белков , а также крупными АТФ-синтетазными комплексами.

Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват,) из цитоплазмы и их окислительное расщепление с образованием СО2 и Н2О, сопряженное с синтезом АТФ.

Митохондрии есть только в клетках эукариотах, в ядерных клетках.

БИЛЕТ -16.ЛИЗОСОМА И ЕЕ РОЛЬ.ЧТО ПРОИЗОЙДЕТ С КЛЕТКАМИ ЕСЛИ ЛИЗОСОМЫ РАЗРУШАТСЯ?

Лизосома — одномембраный органоид. Осуществляет внутриклеточное пищеварение. Один из признаков лизосом — наличие в них ряда ферментов , способных расщеплять белки, углеводы, липиды и нуклеиновые кислоты. Лизосомы формируются из пузырьков , отделяющихся от аппарата Гольджи, и пузырьков, в которые попадают вещества при эндоцитозе.

Функциями лизосом являются:

  • переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток)

  • аутофагия — уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки

  • автолиз — самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток). Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

Когда лизосома разрушается, ферменты которые в ней находятся выходят и растворяют клетку. Клетка погибает.

БИЛЕТ-17.Структура и функции белков?

Белки́ — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот.. Молекулы белков представляют собой линейные полимеры, состоящие из аминокислот(которые являются мономерами). При образовании белка в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-COOH) другой аминокислоты образуются пептидные связи. Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка. Эта информация представлена в виде последовательности нуклеотидов, причём одной аминокислоте соответствует в ДНК последовательность из трёх нуклеотидов — так называемый триплет или кодон.

Функции белков: в клетках живых организмов более разнообразны, чем функции других биополимеров — полисахаридов и ДНК. Так, белки-ферменты играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя цитоскелет, поддерживающий форму клеток. Также белки играют важную роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются при биосинтезе белков организма или подвергаются дальнейшему распаду для получения энергии. Белки — необходимые компоненты всех живых организмов, они участвуют в большинстве жизненных процессов клетки. Следует отметить, что классификация белков по их функции достаточно условна, потому что у эукариот один и тот же белок может выполнять несколько функций. 1)Каталитическая функция-Наиболее хорошо известная роль белков в организме — катализ различных химических реакций. Ферменты — группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм),известно несколько тысяч ферментов; среди них такие как, например, пепсин расщепляют белки в процессе пищеварения. 2)Структурные белки цитоскелета, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. 3) Защитные функции белков: физическая защита(кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. производных эпидермиса. Химическая защита. Расщепление и выведение ядов из организма. Иммунная защита. Белки, входящие в состав крови и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение., Многие процессы внутри клеток регулируются белковыми молекулами, которые не служат ни источником энергии, ни строительным материалом для клетки. Эти белки регулируют транскрипцию, трансляцию, сплайсинг, а также активность других белков и др. Регуляторная функция - последовательности генов. Сигнальная функция белков — способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, о́рганами и разными организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

Растворимые белки, участвующие в транспорте малых молекул. Запасающая функция ,рецепторная, двигательная ф.

БИЛЕТ-18.КАКОВО ВАШЕ МНЕНИЕ ОТНОСИТЕЛЬНО РАЗВИТИЯ ГЕНОМА ЭУКАРИОТИЧЕСКИХ КЛЕТОК?

История показала, что эволюционные возможности клеток эукариотического типа несравнимо выше, чем прокариотического. Ведущая роль здесь принадлежит ядерному геному эукариот, который во много раз превосходит по размерам геном прокариот. Важные отличия заключаются в диплоидности эукариотических клеток благодаря наличию в ядрах двух комплектов генов, а также в многократном повторении некоторых генов. Это расширяет масштабы мутационной изменчивости без угрозы резкого снижения жизнеспособности, эволюционно значимым следствием чего является образование резерва наследственной изменчивости.

Главной частью клетки является ядро, которое окружено двойной мембраной и содержит хромосомы, которые имеют молекулы ДНК. Ядро эукариотической клетки способно к мейозу и митозу. При мейозе происходит деление ядра, при этом количество хромосом уменьшается в два раза, а при митозе происходит деление ядра, при котором сохраняется количество хромосом. Оба этих процесса важны для эукариот.

 Возможно, появление эукариотических клеток можно сравнить по важности с зарождением жизни на земле. Наличие в клетке обоснованного ядра привело к тому, что одноклеточные организмы могли адаптироваться к меняющимся условиям жизни, не меняя при этом свой геном. 

БИЛЕТ-19.ПРОИСХОЖДЕНИЕ КЛЕТОК ПРОКАРИОТОВ И ЭУКАРИОТОВ? ПРИМЕНИМА ЛИ ЭВОЛЮЦИОННАЯ ТЕОРИЯ К УЧЕНИЮ О ТКАНЯХ?

Прокариоты- безъядерные организмы.

Эукариоты- ядерные организмы.

ГИПОТЕЗЫ)

  1. ГИПОТЕЗА ОБ ЭНДОСИМБИОТИЧЕСКОМ ПРОИСХОЖДЕНИИ.- источником некоторых частей эукариотических клеток была эволюция симбиозов. Предпологалось, что 3 класса органелл( митохондрии, реснички, фотосинтезирующие пластиды-произошли от свободно живущих бактерий, которые в результате симбиоза были в определенной последовательности включены в состав клеток прокариот- хозяев.

2)ИНВАГИНАЦИОННАЯ ГИПОТЕЗА- предковой формой был аэробный прокариот. Он содержал несколько геномов , каждый из которых прикреплялся к клеточной оболочке. Органелы, имеющие ДНК и ядро возникли в результате впячивания и отшнуровки фрагментов оболочки вместе с геномом с последующей функциональной специализацией в ядро , митохондрий, хлоропласты, усложнением ядерного генома, развитием цитоплазматических мембран.Эта гипотеза объясняет наличие 2 мембран в оболочке ядра, митохондрий, хлоропластов.

3) ПРЯМАЯ ФИЛИАЦИЯ- все живые организмы произошли прямым путем от единственной предковой популяции в результате накопления мутаций под действием естественного отбора. Все растения произошли от одного предка , возможно от зеленых водорослей.

Эволюционная теория Дарвина применима к учению о тканях.

Ткань — совокупность клеток и межклеточного вещества, объединенных общим происхождением, строением и выполняемыми функциями. Строение тканей живых организмов изучает гистология. Совокупность различных и взаимодействующих тканей образуют органы.

Основные факторы эволюции по Дарвину

  • Наследственная изменчивость — изменения, которые возникают у каждого организма независимо от внешней среды и передаются потомкам;

  • Борьба за существование — совокупность взаимоотношений между особями и факторами окружающей среды;

  • Естественный отбор — выживание более приспособленных особей и гибель менее приспособленных.

  • Изоляция.

БИЛЕТ-20.ГИПОТЕЗЫ ПРОИСХОЖДЕНИЯ МНОГОКЛЕТОЧНЫХ ОРГАНИЗМОВ

. Гипотезы происхождения многоклеточных организмов. Все многоклеточные, как растения, так и животные, при половом размножении начинают процесс индивидуального развития с одной клетки — зиготы. Это дает основание судить о возможности их происхождения от протистов. Считается, что основной группой, от которой берут свое начало многоклеточные организмы, являются колониальные жгутиковые протисты.

В основе современных представлений о происхождении многоклеточных организмов лежат гипотезы немецкого зоолога Э. Геккеля и русского ученого И.И. Мечникова, которые были предложены в конце 19 в.

Гипотеза Э. Геккеля основана на сходстве эмбриональной стадии развития многоклеточных животных (бластулы) с шаровидной колонией жгутиковых протистов типа вольвокса. Э. Геккель считал, что примитивные многоклеточные — губки и кишечнополостные произошли от колониальных жгутиковых, у которых одна сторона вогнулась внутрь колонии, в результате чего образовался второй, внутренний слой клеток. Сходство этой предковой формы с эмбриональной гаструлой дало основание Э. Геккелю назвать ее гастреей. Гастрея имела рот, слепо замкнутую кишечную полость и двухслойную стенку тела, состоящую из экто- и энтодермы. Гастрея Э. Геккеля близка по организации к кишечнополостным, от которых, возможно, идет ветвь к высшим многоклеточным.

Согласно гипотезе И.И. Мечникова предками многоклеточных были шарообразные колонии жгутиковых, первичным способом питания которых был фагоцитоз. Клетки, захватывающие пищевые частицы, временно утрачивали жгутики и перемещались внутрь колонии. Затем они могли возвращаться на поверхность колонии и восстанавливать жгутик. Путем дальнейшего размножения этих клеток внутри колонии образовался второй слой клеток и возник двухслойный организм — фагоцителла. Постепенно у фагоцителлы произошло разделение функций между клетками: наружные клетки эктодермы стали выполнять покровную и двигательную функции, а клетки внутреннего слоя — энтодермы — функции питания и размножения. В 70-е гг. 20 в. зоологи обратили внимание на крошечный морской организм — трихоплакс.

В 1973 г. русский ученый А.В. Иванов установил, что трихоплакс по своему строению соответствует гипотетическому существу фагоцителле и, таким образом, заполняет брешь между ныне существующими одноклеточными и многоклеточными животными.

БИЛЕТ-21. РОЛЬ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ В ЖИЗНИ ЖИВЫХ СУЩЕСТВ.КАК ОРГАНИЗМЫ ИСПОЛЬЗУЮТ ЭНЕРГИЮ? АТФ В БИОЛОГИЧЕСКОЙ РАБОТЕ?

Обмен веществ и энергии - это совокупность физических и химических процессов превращения веществ и энергии в живых организмах, а также обмен веществами и энергией между организмом и окружающей средой. Обмен веществ у живых организмов заключается в поступлении из внешней среды различных веществ, в превращении и использовании их в процессах жизнедеятельности и в выделении образующихся продуктов распада в окружающую среду. 

Диссимиляция – энергетический обмен.

Ассимиляция- пластический обмен.

Обязательным условием существования любого организма является постоянный приток питательных веществ и постоянное выделение конечных продуктов химических реакций, происходящих в клетках организма. Поступившие в организм в ходе питания органические вещества расщепляются ферментами на строительные блоки - мономеры и направляются во все клетки организма. Часть молекул этих; веществ расходуется на синтез специфических органических веществ, присущих данному организму. В клетках синтезируются белки, липиды, углеводы, нуклеиновые кислоты и другие вещества, которые выполняют различные функции (строительную, каталитическую, регуляторную, защитную и т.д.).Другая часть низкомолекулярных органических соединений, поступивших в клетки, идет на образование АТФ, в молекулах которой заключена энергия, доступная непосредственно для выполнения работы. В ходе превращения веществ в клетках организма образуются конечные продукты обмена, которые могут быть токсичными для организма и поэтому выводятся из него (например, аммиак). Таким образом, все живые организмы постоянно потребляют из окружающей среды определенные вещества, преобразуют их и выделяют в среду конечные продукты. Деятельность мышц, как любой процесс, происходящий в организме, требует энергии. Энергия нужна даже на работу мельчайших мышц глаза, дыхательных мышц и мышц сосудов или внутренних органов. Живой организм расходует энергию даже в состоянии глубокого наркоза или комы.

Энергия, необходимая для мышечного сокращения, освобождается в результате распада химических веществ. Мышечная клетка устроена природой так, что может использовать для своего сокращения энергию распада только одного-единственного химического вещества - аденозинтрифосфорной кислоты (АТФ).  Соответственно, во время мышечного сокращения происходит распад АТФ в работающей мышечной клетке.

БИЛЕТ-22 ЗНАЧЕНИЕ ПРОЦЕССОВ ОБМЕНА ВЕЩЕСТВ. В ФУНКЦИОНИРОВАНИИ КЛЕТКИ, ОРГАНИЗМА? РОЛЬ АТФ В РОСТЕ И БИОСИНТЕЗЕ?ГДЕ В КЛЕТКЕ ПРОТЕКАЮТ ПРОЦЕССЫ КИСЛОРОДНОГО ОКИСЛЕНИЯ? КАКОВ ИХ ХИМИЗМ И ЭНЕРГЕТИЧЕСКИЙ ЭФФЕКТ?

Обмен веществ и энергии - это совокупность физических, химических и физиологических процессов превращения веществ и энергии в живых организмах, а также обмен веществами и энергией между организмом и окружающей средой

Обязательным условием существования всех живых организмов, в том числе и человека, является постоянный обмен веществами и энергией с внешней средой. Из окружающей среды в организм человека поступают питательные вещества, кислород, вода, минеральные соли, витамины, необходимые для построения и обновления структурных элементов клеток и образования энергии, обеспечивающей протекание жизненных процессов. В клетках организма непрерывно происходят процессы химических превращений веществ: синтез свойственных организму белков, жиров и углеводов, одновременное расщепление сложных органических соединений с высвобождением энергии, выделение во внешнюю среду образующихся продуктов распада — воды, углекислого газа, аммиака, мочевины. Таким образом, обмен веществ— это совокупность процессов химического превращения веществ с момента их поступления в организм до выделения конечных продуктов. 

Фотосинтез и биосинтез белков — примеры пластического обмена. Роль ядра, рибосом, эндоплазматической сети в биосинтезе белка. Ферментативный характер реакций биосинтеза, участие в нем разнообразных ферментов. Молекулы АТФ — источник энергии для биосинтеза.

«кислородное дыхание» может обозначать-весь энергетический обмен, происходящий при наличии кислорода.

Происходит на кристах митохондрий. 24 атома водорода, полученные в предыдущих стадиях, окисляются кислородом, при этом образуется вода и энергия на 34 АТФ. 

Таким образом, всего при кислородном окислении глюкозы получается 38 АТФ.

БИЛЕТ-23.РОЛЬ АТФ В ТРАНСПОРТЕ ИОНОВ ЧЕРЕЗ КЛЕТОЧНУЮ МЕМБРАНУ? ЧТО ТАКОЕ АТФ И АДФ?КАК ИСПОЛЬЗУЮТ АТФ В БИОЛОГИЧЕСКОЙ РАБОТЕ?

Аденозинтрифосфа́т — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах.

Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществления мышечного сокращения.

Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций:

  • Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.

  • Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.

  • АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормональногосигнала.

  • Также известна роль АТФ в качестве медиатора в синапсах.

  • Многообразна роль АТФ в биологических процессах, связанных с переносом электронов и окислительным фосфорилировани-ем. Главными являются молекулярные реакции переноса энергии. Вследствие этого и возникает возможность биосинтеза - химической, механической, электрической и других видов энергии в живых системах.

Аденозиндифосфат (АДФ) — нуклеотид, состоящий из аденина, рибозы и двух остатков фосфорной кислоты. АДФ образуется в результате переноса концевой фосфатной группы АТФ. АДФ участвует в энергетическом обмене во всех живых организмах.

БИЛЕТ-24.СВОЙСТВА АВТОТРОФОВ И ГЕТЕРОТРОФОВ?

 Клетки растений и фотосинтезирующих бактерий на основе энергии солнечного света синтезируют АТФ и НАДФН, которые используются для синтеза углеводов, жиров, белков, нуклеиновых кислот и иных органических соединений, входящих в состав этих клеток и обеспечивающих их жизнь. Такие клетки называются автотрофными. Они делятся на фототрофы и хемеотрофы.фототрофы используют энергию солнца,это все зелёные растения и сине-зелёные водоросли.хемеотрофы-используют энергию химических реакций,это бактерии. 

Все остальные живые существа, населяющие нашу планету, не способны использовать солнечную энергию и синтезировать органические вещества из неорганических соединений. Они должны получать готовые органические вещества, которые образуются в фотосинтезирующих и хемосинтезирующих клетках и, следовательно, являются гетеротрофными . Гетеротрофы получают энергию в результате окисления органических соединений. Следует заметить, что и фотосинтезирующие, и хемосинтезирующие автотрофы также способны получать энергию благодаряокислению органических веществ . Однако у гетеротрофов эти соединения поступают извне готовыми, а у автотрофов они синтезируются в клетках из неорганических соединений и далее используются ими же. Для гетеротрофных организмов окисление органических соединений служит единственным способом получения энергии. У растений, фотосинтезирующих бактерий этот путь используется с наступлением темноты, с прекращением фотосинтеза.