
- •Псковский политехнический институт
- •Псковский политехнический институт
- •Варианты заданий к лабораторной работе
- •3. Содержание отчета.
- •130 Содержание
- •Порядок проведения лабораторной работы.
- •20__ Год
- •Описание лабораторной установки.
- •Краткие теоретические сведения.
- •Описание лабораторной установки.
- •Варианты заданий к лабораторной работе "Исследование мультиплексора".
- •Краткие теоретические сведения.
- •К раткие теоретические сведения.
- •3. Содержание отчета.
- •Варианты заданий к лабораторной работе "Исследование оперативного запоминающего устройства".
- •Порядок проведения лабораторной работы.
- •Описание лабораторной установки.
- •Описание лабораторной установки.
- •Краткие теоретические сведения.
- •Варианты заданий к лабораторной работе "Исследование синхронного счетчика".
- •Порядок проведения лабораторной работы.
- •3. Содержание отчета.
- •3. Содержание отчёта.
- •Порядок проведения лабораторной работы.
- •Варианты заданий к лабораторной работе "Исследование сумматора".
- •Описание лабораторной установки.
- •Краткие теоретические сведения.
- •Описание лабораторной установки.
- •Порядок проведения лабораторной работы.
- •Краткие теоретические сведения.
- •3. Содержание отчёта.
- •Варианты заданий к лабораторной работе "Исследование счетчика Джонсона"
- •Варианты заданий к лабораторной работе "Исследование матричного умножителя".
- •Краткие теоретические сведения.
- •Порядок проведения лабораторной работы.
- •Описание лабораторной установки.
- •Описание лабораторной установки.
- •Порядок проведения лабораторной работы.
- •Краткие теоретические сведения.
- •Варианты заданий к лабораторной работе "Исследование кольцевого счетчика".
- •3. Содержание отчета.
- •Варианты заданий к лабораторной работе "Исследование алу".
- •Краткие теоретические сведения.
- •Порядок проведения лабораторной работы
- •Описание лабораторной установки.
Описание лабораторной установки.
У
111
и исследования принципов их работы.
Кроме этого в составе стенда имеются
логические элементы для реализации
требуемых в варианте задания логических
функций.
12
|
При записи информации в стек устройство управления УУ переводит счетчик в режим суммирования, ОЗУ в режим записи, а выходной регистр RG в режим, при котором его выходы находятся в состоянии высокого импеданса (Z или третье состояние). В этом случае шина данных работает на прием входной информации.
Процедура записи информации в такой стек (цикл записи) состоит из двух тактов, соответствующих приходам отрицательного и положительного фронтов импульсов управления как показано на рис. 9.3 и в таблице на рис.9.4.
При поступлении отрицательного фронта происходит запись входной информации D0 в ячейку с адресом A0. В момент прихода положительного перепада тактирующего сигнала, ОЗУ переводится в режим считывания и к содержимому счетчика А0 прибавляется единица. При этом происходит выбор ячейки ОЗУ с адресом А0+1 и это же значение адреса появляется на выходе указателя стека. Выходы регистра в режиме записи информации в стек поддерживаются в состоянии высокого импеданса и информация с ОЗУ на шину данных не поступает.
В
следующем цикле соответствующим уровнем
сигнала
производится запись текущих данных в
ячейку ОЗУ с адресомA0+1
и так далее. Обозначение (A0)
на рис. 9.4
соответствует содержимому ячейки ОЗУ
с адресом А0.
В
зависимости от режима считывания, схема,
изображенная на рис. 9.3 может работать
как стек FIFO либо как стек LIFO. В первом
случае необходимо вновь произвести
установку начального адреса А0,
сигналом
(рис. 9.3) перевести ОЗУ в режим считывания,
выходы регистра RG сигналом Vz - в активное
состояние. Шина данных при этом начинает
работать на передачу информации, режим
работы счетчика СТ2 (сложение) сохраняется.
П
121
моделируемого стека и временные диаграммы его работы приведены на рис. 9.3.
Рис. 9.3
Приняты следующие обозначения RAM - оперативноe запоминающее устройство, СТ2 - двоичный счетчик, RG - регистр памяти, УУ - устройство управления, SР - указатель стека.
Такое
устройство функционирует следующим
образом. Перед началом работы в счетчик
СТ по сигналу, поступающему на вход V
заносится начальный адрес обращения
к ОЗУ -
.
Указатель стека, связанный с выходами
счетчика, позволяет в том или ином виде
отобразить номер ячейки ОЗУ, к которой
будет происходить обращение в данном
цикле работы.
120
Сборка макета мультиплексора производится путём организации связей между сигнальными гнёздами, соединенными с выводами цифровых логических элементов и узлов, входящих в состав лабораторного стенда. Для реализации простых связей используются проводники с одиночными стандартными штеккерами. В случае необходимости установления разветвленных соединений возможно применение проводников с увеличенным количеством штеккеров.
Каждый лабораторный стенд подключается к внешнему источнику питания. Включение стенда производится тумблером "Вкл.". О наличии питающего напряжения свидетельствует свечение зеленого светодиода.
При сборке макета и в ходе работы не разрешается подавать какие-либо сигналы на выходы микросхем, находящиеся в активном состоянии и соединять их друг с другом. Все изменения в схеме должны производиться только при отключенном питании элементов лабораторного стенда.
Порядок проведения лабораторной работы.
1. Домашняя подготовка.
В ходе домашней подготовки необходимо:
а)
разработать на основе мультиплексоров
41
принципиальные схемы мультиплексоров
16
1
с использованием первого и второго
способа наращивания разрядности;
б)
записать в развёрнутом виде логическую
функцию, описывающую состояние выхода
мультиплексора 161;
в) представить в табличной форме логическую функцию из варианта задания, преобразовав её к виду, который может быть реализован на элементах макета;
г) записать состояния входов мультиплексора для формирования данной логической функции;
д) представить в табличной форме логическую функцию, описывающую заданную в соответствующем варианте операцию отношения между двумя двухразрядными числами А и В;
е
13поступает число А, а на
- В.
2. Проведение лабораторной работы.
а)
собрать макет мультиплексора 161,
используя первый способ наращивания
разрядности, на входы управления
состоянием выходов мультиплексоров
подать сигнал логического нуля с
соответствующих гнезд;
б)
подключить гнезда, обслуживаемые группой
из шестнадцати тумблеров ко входам
данных мультиплексоров 161
(свечение красного светодиода
свидетельствует о наличии в соответствующем
гнезде сигнала логической единицы);
в)
подать сигналы с гнёзд, размещенных
вблизи группы из четырех тумблеров на
входы управления мультиплексора 161,
выход мультиплексора соединить с
гнёздами, обслуживающими индикатор
состояния выхода, расположенный в
верхней правой части лицевой панели
лабораторного стенда и обозначенный
"Вх. инд." (при наличии на входе
индикатора сигнала логической единицы
загорается красный светодиод, если
сигнал равен нулю, то свечение отсутствует);
г) проверить работу собранного мультиплексора, для чего установить на информационных входах кодовую комбинацию 0100111111110010 и последовательным перебором сигналов управления убедиться в поочередном появлении соответствующих входных сигналов на выходе мультиплексора (следует учитывать, что сигналу тумблера, обслуживающему какой-либо вход управления мультиплексора приписывается двоичный вес этого входа);
д
Рис. 9.2
14
119
Рис. 9.1
сдвиговых регистров не нашли широкого применения в вычислительных устройствах из-за малого объема памяти (глубины стека) и потери информации при считывании. Последнее обстоятельство не позволяет реализовать режим многократного считывания данных.
Альтернативой регистровому стековому запоминающему устройству является, так называемый, "моделируемый" стек. Он строится на основе обычного ОЗУ и дополнительного устройства формирования адреса, в качестве которого чаще всего используется двоичный счетчик с предустановкой. Структурная схема
В запоминающих устройствах стекового типа обращение к ячейкам производится по специальному алгоритму, а именно, после занесения информации в какую-либо ячейку подготавливается к записи соседняя и т.д. Аналогично реализуется и режим считывания. То есть информация в стековом ОЗУ записывается и считывается последовательным образом.
Номер ячейки, в которую будет производиться запись информации или из которой произойдет считывание называется указателем стека (SP) и в процессе работы изменяется автоматически. Из последовательного принципа обработки информации в стековых ОЗУ вытекает жесткая взаимосвязь режимов записи и считывания. В частности оказывается, что в любой данный момент возможно считывание информации, занесенной либо в самом начале работы стека, либо в конце, то есть непосредственно перед переходом в режим считывания.
В первом случае структура стекового ОЗУ называется FIFO (first in, first out - первым вошел, первым вышел), а во втором LIFO (last in, first out - последним вошел, первым вышел). Принцип работы стековых запоминающих устройств пояснен на рис. 9.1. Стрелкой отмечено положение указателя стека, звездочками - произвольные состояния запоминающих ячеек.
Обычно стековые ЗУ используются в устройствах обработки информации с единой шиной данных. Это значит, что записываемые и считываемые из ЗУ данные передаются по одним и тем же линиям. Таким образом, в режиме записи выводы ЗУ, связанные с шиной данных должны вести себя как входы, а в режиме считывания - как выходы. Обычно это реализуется путем использования в схеме специальных шинных формирователей (ШФ) с тремя состояниями, как показано на рис. 9.2 либо введением третьего - высокоимпедансного состояния в само запоминающее устройство.
И
118
соединительные проводники с увеличением количеством штеккеров);
е) последовательно изменяя комбинации сигналов на управляющих входах мультиплексора и логической схемы проверить идентичность формируемых ими логических функций и соответствие их заданным, зафиксировать полученные результаты;
ж)
поменять местами штеккера, связанные
с крайними гнёздами, в которых формируются
управляющие сигналы, ()
проделать все операции, писанные в
пункте "е", определить явный вид
формируемой логической функции, в отчете
объяснить полученные результаты;
и)
собрать макет мультиплексора 161
с использованием дешифратора, произвести
подключения аналогичные описанным в
пунктах "б" и "в";
к) проверить работу мультиплексора по методике, указанной в пункте "г";
л)
считая, что левая группа из двух тумблеров,
связанных с входами управления
задает код числа А, а правая, обслуживающая
входы
-
код числа В, установить на информационных
входах сигналы, соответствующие
формированию заданной функции отношения
чисел;
м) путем перебора кодов чисел А и В проверить функционирование реализованной на мультиплексоре логической схемы и сравнить полученные результаты о расчётными;
н)
поменять местами группы штеккеров,
посредством которых на управляющие
входы мультиплексора задаются числа А
и В, ()проверить
функционирование системы в этом случае,
зафиксировать и объяснить полученные
результаты;
По окончании лабораторной работы рабочая тетрадь с результатами экспериментов представляется преподавателю и в ней делается соответствующая запись о выполнении работы.
15
3. Содержание отчёта.
Окончательный отчет по лабораторной работе должен включать в себя материалы предварительного отчёта, а также описания хода выполненных исследований, полученные результаты, их анализ и соответствующие выводы.
При подготовке к работе рекомендуется использовать следующую литературу:
Угрюмов E.П. Проектирование элементов и узлов ЭВМ. Учеб. пособие для спец. ЭВМ вузов. - М.: Выс.шк. 1987. - 318 с., ил. (стр. 157 - 160).
Опадчий Ю.Ф. и др. Аналоговая и цифровая электроника (Полный курс): Учебник для вузов. - М.: Горячая линия – Телеком, 2000. – 768 с.: ил. (стр 540-544).
Угрюмов Е.П. Цифровая схемотехника. – СПб.: БХВ – Санкт – Петербург, 2000.- 528 с.: ил. ( стр. 54-64)
Схемотехника ЭВМ: Учебник для студентов вузов спец. ЭВМ.Под ред. Г.Н.Соловьева. - М.: Высш. шк., 1985. - 391 с., ил. (стp.110 - 119).