3. Динамическое программирование. Принцип оптимальности Беллмана
Инвестируются средства в группу
предприятий. Отдача от инвестиций fi(x),
где х – размер инвестиций;i– номер предприятия. Определите, как
необходимо распределить средства в
размере 50 единиц между предприятиями,
чтобы добиться максимальной отдачи от
инвестиций. Каким будет эффект от
инвестиций?
x |
f1(x) |
f2(x) |
f3(x) |
f4(x) |
10 |
13 |
17 |
18 |
15 |
20 |
21 |
23 |
22 |
19 |
30 |
24 |
25 |
30 |
27 |
40 |
28 |
35 |
38 |
28 |
50 |
34 |
42 |
41 |
29 |
|
x |
f1(x) |
f2(x) |
f3(x) |
f4(x) |
10 |
12 |
11 |
14 |
15 |
20 |
29 |
29 |
18 |
23 |
30 |
32 |
39 |
26 |
28 |
40 |
34 |
46 |
30 |
29 |
50 |
42 |
54 |
37 |
34 |
|
x |
f1(x) |
f2(x) |
f3(x) |
f4(x) |
10 |
11 |
15 |
18 |
14 |
20 |
21 |
16 |
28 |
20 |
30 |
24 |
17 |
30 |
25 |
40 |
25 |
24 |
34 |
32 |
50 |
28 |
34 |
43 |
41 |
|
x |
f1(x) |
f2(x) |
f3(x) |
f4(x) |
10 |
12 |
12 |
17 |
14 |
20 |
17 |
17 |
19 |
21 |
30 |
23 |
27 |
26 |
23 |
40 |
26 |
31 |
34 |
32 |
50 |
34 |
34 |
42 |
33 |
|
x |
f1(x) |
f2(x) |
f3(x) |
f4(x) |
10 |
13 |
19 |
20 |
15 |
20 |
20 |
20 |
21 |
24 |
30 |
25 |
22 |
26 |
27 |
40 |
35 |
27 |
35 |
31 |
50 |
41 |
36 |
36 |
36 |
|
x |
f1(x) |
f2(x) |
f3(x) |
f4(x) |
10 |
17 |
19 |
11 |
12 |
20 |
25 |
29 |
21 |
17 |
30 |
35 |
34 |
31 |
19 |
40 |
44 |
44 |
35 |
25 |
50 |
51 |
47 |
45 |
32 |
|
x |
f1(x) |
f2(x) |
f3(x) |
f4(x) |
10 |
16 |
10 |
11 |
14 |
20 |
18 |
14 |
17 |
24 |
30 |
20 |
15 |
25 |
27 |
40 |
24 |
22 |
34 |
33 |
50 |
28 |
30 |
41 |
38 |
|
x |
f1(x) |
f2(x) |
f3(x) |
f4(x) |
10 |
16 |
16 |
20 |
19 |
20 |
24 |
22 |
30 |
20 |
30 |
33 |
24 |
38 |
21 |
40 |
39 |
32 |
43 |
29 |
50 |
48 |
41 |
49 |
31 |
|
x |
f1(x) |
f2(x) |
f3(x) |
f4(x) |
10 |
18 |
17 |
15 |
17 |
20 |
21 |
25 |
18 |
20 |
30 |
28 |
26 |
25 |
23 |
40 |
36 |
27 |
27 |
28 |
50 |
46 |
29 |
31 |
36 |
|
x |
f1(x) |
f2(x) |
f3(x) |
f4(x) |
10 |
12 |
12 |
18 |
19 |
20 |
14 |
16 |
20 |
22 |
30 |
21 |
21 |
29 |
26 |
40 |
29 |
27 |
30 |
27 |
50 |
37 |
36 |
32 |
33 |
|