Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

konstruktsii

.doc
Скачиваний:
91
Добавлен:
10.04.2015
Размер:
1.4 Mб
Скачать

1.конструктивные системы и схемы крупнопанельных зданий. Крупнопанельными называют здания, монтируемые из заранее изготовленных крупноразмерных плоскостных элементов стен, перекрытий и покрытий и других конструкций. Эти сборные конструкции имеют повышенную заводскую готовность — отделанные наружные и внутренние поверхности, вмонтированные окна и двери. Строительство зданий из крупных панелей позволяет существенно повысить степень индустриальности строительства и производительность труда, снизить стоимость строительства и сократить сроки возведения зданий. По конструктивной схеме они бывают бескаркасные с продольными и поперечными несущими стенами и каркасные. Бескаркасные здания состоят из меньшего числа сборных элементов и отличаются простотой монтажа и имеют преимущественное применение в массовом жилищном строительстве (рис. 12.1). В этих зданиях наружные и внутренние стены воспринимают все нагрузки, действующие на здание. Пространственная жесткость и устойчивость обеспечивается взаимной связью между панелями стен и перекрытий. При этом может быть четыре конструктивных варианта опирания плит: на продольные несущие стены (рис. 12.1,а); по контуру (на продольные и поперечные стены; рис. 12.1,6); на внутренние поперечные стены; по трем сторонам (на продольные несущие и внутренние поперечные стены; рис. 12.1, в).

Рис. 12.1. Конструктивные стены бескаркасных крупнопанельных зданий

 

Рис. 12.2. Конструктивные схемы каркасно-панельных зданий

В каркасных панельных зданиях действующие на них нагрузки воспринимают ригели и стойки каркаса, а панели выполняют чаще всего лишь осаждающие функции (рис. 12.2). При этом различают следующие конструктивные схемы: с полным поперечным каркасом (рис. 12.2,а); с полным продольным каркасом (рис.

8.узлы и стыки внутренних понелей КОНТАКТНО-ГНЕЗДОВОЙ

Контактно-гнездовые горизонтальные стыки и контактные стыки на пальцах исключают выявле­ние в интерьере опорных приливов. В первом слу­чае плиты перекрытий заводятся в подрезки у верхней грани панелей, чем значительно повыша­ется звукоизоляция. Во втором случае плиты пере­крытий ложатся на верхнюю грань панели опор­ными выступами-пальцами. В нижней грани пане­ли пальцам соответствуют сквозные пазы или про­странство между пальцами заполняется монолит­ным бетоном, образующим постель для панели. В стыках на пальцах в процессе эксплуатации зда­ния звукоизоляция может несколько снизиться.  Заслуживает внимания платформенный стык гнездового типа. Его конструкция обеспечивает качественное заполнение зазоров раствором и позволяет снижать высоту плит перекрытия в стыке. Все это повышает его прочность на 10...30% по сравнению с платформенным стыком обычного типа.

Рис. 12.45. Платформенный стык на фиксаторах

а—с панелями перекрытий сплошного сечения; б—с многопустотными настилами; 1—панель стены; 2—па­нель перекрытия; 3 — фиксатор: 4 — цементный раствор (или паста); 5 — бетон замоноличивания; 6 — бетонные пробки в пустотах панели перекрытия; 7 — стык арматур­ных выпусков перекрытия

Точность проектного положения панелей стен (соосность, вертикаль и пр.) при платформенных стыках обеспечивают вертикальные болты-фиксаторы. Они размещены по верхним опорным граням панелей и входят ответствующие отверстия в нижних гранях вышележащих панелей. При постановке на болты и их рихтовке панель стены приводят в проектное положение, после чего плотно заполняют раствором верхний горизонтальный шов платформенного стыка. Болты-фиксаторы часто используют вместо подъемных петель и для устройства межэтажных связей стеновых панелей.

Плоский комбинированный стык (рис. 1, г) с опиранием перекрытия по всей длине стыка и передачей вертикальной нагрузки как с панели на панель (во внешней зоне стыка), так и через перекрытие (во внутренней зоне) применяют для легкобетонных однослойных панелей толщиной более 350 мм, для панелей любой толщины из ячеистых бетонов и для двухслойных панелей(.г)

6.конструкции внутренних панельных снет. В зависимости от формы они подразделяются на сплошные беспроемные, с проемами, типа «флажок», плоские и с консолями для опирания настилов или лестничных площадок, а в зависимости от способа производства — на панели кассетной, стендовой, конвейер­ной, прокатной технологии. В большинстве случаев панели внутренних стен межквартир­ных перегородок изготавливают из тяжелого железобетона тол­щиной 180—200 мм, межкомнатные— из тяжелого железобетона толщиной 100-180 мм. Толщина панелей определяется прочно­стью стыка панелей, условиями опирания перекрытий на па­нель, требованиями по огнестойкости панелей и звукоизоляции стен от воздушного шума. Панели армируются двумя арматурными сетками из низкома­рочной стали или пространственными каркасами, состоящими из поперечных плоских каркасов, объединенных горизонталь­ными стержнями. В гранях дверных проемов панелей устанавли­вают деревянные пробки для крепления дверных проемов.

Кон­структивные решения несущих стеновых панелей внутренних стен приведены на рис. 2.8.

Рис.2 Заделка вертикального «открытого» стыка

  1. панель внутренней стены;

  2. цементный раствор;

  3. слив из алюминия в местах пересечения вертикальных и горизонтальных стыков;

  4. панели наружной стены;

  5. утепляющий вкладыш;

  6. воздухозащитная лента на клее;

  7. водоотбойная лента;

  8. покрытие грунтовочным составом.

В закрытых стыках для их герметизации устанавливают уплотняющие прокладки, на которые наносят с внешней стороны герметизирующую мастику. При применении нетвердеющих мастик следует предусматривать защитное покрытие.

  1. поверхности панелей наружных стен, покрытые грунтовочным составом;

  2. уплотняющая прокладка «Вилатерм» или упругий шнур «гернит»;

  3. вулканизующийся герметик или герметизирующая мастика.

Заделка вертикального закрытого

стыка: вулканизующийся герметик или герметизирующая мастика;«Вилатерм» или упругий шнур«гернит», установленный «насухо»; панели наружной стены;

поверхности, покрытые грунтовочным составом;«Вилатерм» или упругий шнур «гернит» остановленный на клее;

  1. воздухозащитная лента на клее; утепляющий вкладыш.

20. стенки жесткости в каркасн здан. Каркасные крупнопанельные здания выполняют в виде мно­гоярусной пространственной системы, состоящей из колонн и ме­ждуэтажных перекрытий. Несущими элементами являются ко­лонны, ригели и перекрытия, а роль ограждающих элементов выполняют наружные стены. Такой конструктивный тип исполь­зуют для возведения высотных зданий, а также в тех случаях, ко­гда необходимы помещения значительных размеров, свободные от внутренних опор (рис. 2.3).

Рис. 2.3. Конструктивные типы каркасных зданий: а — с продольным расположением ригелей;

б — с поперечным расположе­нием ригелей;

в — безригельное решение;

г — с пространственным карка­сом;

д — с неполным поперечным каркасом и несущими наружными стенами;

е — с опиранием панелей на наружные панели и две стойки по внутреннему ряду;

1 — самонесущие стены; 2 — колонны; 3 — ригели; 4 — плиты междуэтажных перекрытий; 5 — надколонная плита перекрытия; 6 — межколонные плиты; 7 — панель-вставка  

Пространственная жесткость в крупнопанельных зданиях достигается устройством:

  • многоярусной рамы, которая образована пространствен­ным сочетанием колонн, ригелей, перекрытий и представляет собой геометрически неизменяемую систему;

  • стенок жесткости, устанавливаемых между колоннами (на каждом этаже);

  • плит-распорок, уложенных в междуэтажных перекрытиях (между колоннами);

  • стен лестничных клеток и лифтовых шахт, связанных с кон­струкциями каркаса;

  • надежного сопряжения элементов каркаса в стыках и узлах. 

В зданиях с неполным каркасом наряду с внутренним рядом колонн нагрузку от междуэтажных перекрытий воспринимают наружные стены. В современном строительстве такой конструк­тивный тип имеет ограниченное применение (см. рис. 2.1, в).

Каждый конструктивный тип здания, в свою очередь, имеет несколько конструктивных схем, различающихся взаимным рас­положением несущих элементов.

23. конструкции колонн в каркасных зданиях . В зданиях каркасной системы несущим остовом служит система из опирающихся на фундаменты стоек (колонн) и горизонтальных связей (ригелей), образующих каркас здания. Колонны каркаса размещены как по периметру, так и внутри здания. Такие конструктивные схемы широко используются в промышленном строительстве, а также при сооружении общественных зданий. Основным достоинством каркасных зданий является их высокая экономичность, так как при каркасных системах стены служат лишь ограждающими конструкциями и поэтому их можно делать тонкими, одинаковой толщины по всей высоте здания (рис. 3).Каркас обычно выполняют из железобетонных сборных конструкций. Колонны сечением 300X300 или 400Х400 мм устанавливают на расстоянии 6 и 12 ж друг от друга. Они опираются на железобетонные башмаки стаканного типа, которые установлены на железобетонные блочные или свайные фундаменты. Ригели каркаса также сборные железобетонные, прямоугольного сечения, высотой 450 мм. Соединяют элементы каркаса, сваривая закладные стальные детали, которые заложены в конструкции при их изготовлении. Колонны каркаса для жилыхиобщественных зданий принимают сечением 400x400 мм, высотой на два-три этажа. Такие колонны по своей несущей способности при обычном армировании могут применяться в зданиях высотой не более 16 этажей.Для увеличения несущей способности колонн под большие нагрузки есть несколько путей: развитие сечений колонн до размеров 60x60, 80x80 см и т. д.; повышение марки бетона; применение в колоннах жесткой несущей арматуры. При больших нагрузках целесообразно сечение со стальным сердечником.

При проектировании зданий поперечно-стеновой и продольно-стеновой конструктивных систем необходимо учитывать, что параллельно расположенные несущие стены, объединенные между собой только дисками перекрытий, не могут перераспределять между собой вертикальные нагрузки. Для обеспечения устойчивости стен при аварийных воздействиях (пожаре, взрыве газа) рекомендуется предусматривать участие стен перпендикулярного направления. При наружных несущих стенах из небетонных материалов (например, из слоистых панелей с листовыми обшивками) рекомендуется продольные диафрагмы жесткости располагать так, чтобы они хотя бы попарно соединяли поперечные стены. В изолированно расположенных несущих стенах рекомендуется предусматривать вертикальные связи в горизонтальных соединениях и стыках.

24. стыки колонн

Наиболее ответственными местами сборного каркаса являются его узлы, в которых стыкуются между собой отдельные элементы. К ним предъявляют следующие требования: обеспечение надежной работы конструкций, долговечности и простоты устройства, возможности производства работ в зимнее время, точности взаимного расположения элементов. На рис. 12.23 даны примеры решения стыков колонн сборного железобетонного каркаса в виде сферических торцовых поверхностей и плоского безметалльного соединения концов колонн. Выпуски арматуры сваривают между собой. Более просты стыки с плоскими горцами колонн, которые армированы сетками и при центральном сжатии могут выдерживать на смятие значительные напряжения, превышающие в несколько раз приименную прочность бетона.

Рис 12.23. Типы стыков колонн: а — сферический, 6 — плоский безметалльный, 1 — сферическая бетонная поверхность, 2 — выпуски арматурных стержней, 3 — стыковочные ниши, 4 — паз для монтажа хомута, 5 — раствор или мелко-зернистый бетон, 6 — центрирующий бетонный выступ, 7 - сварка выпусков арматуры

и ненесущих стен передаются в основном на поперечные несущие стены, а плиты перекрытия работают преимущественно по балочной схеме с опиранием по двум противоположным сторонам. Горизонтальные нагрузки, действующие параллельно поперечным стенам, воспринимаются этими стенами. Горизонтальные нагрузки, действующие перпендикулярно поперечным стенам, воспринимаются: продольными диафрагмами жесткости; плоской рамой за счет жесткого соединения поперечных стен и плит перекрытий; радиальными поперечными стенами при сложной форме плана здания.

Продольными диафрагмами жесткости могут служить продольные стены лестничных клеток, отдельные участки продольных наружных и внутренних стен. Примыкающие к ним плиты перекрытий рекомендуется опирать на продольные диафрагмы, что улучшает работу диафрагм на горизонтальные нагрузки и повышает жесткость перекрытий и здания в целом.

Здания с поперечными несущими стенами и продольными диафрагмами жесткости рекомендуется проектировать высотой до 17 этажей. При отсутствии продольных диафрагм жесткости в случае жесткого соединения монолитных стен и плит перекрытий рекомендуется проектировать здания высотой не более 10 этажей.

Здания с радиально расположенными поперечными стенами при монолитных перекрытиях можно проектировать высотой до 25 этажей. Температурно-усадочные швы между секциями протяженного здания с радиально расположенными стенами рекомендуется размещать так, чтобы горизонтальные нагрузки воспринимались стенами, расположенными в плоскости их действия или под некоторым углом. С этой целью в температурно-усадочных швах необходимо предусматривать специальные демпферы, работающие податливо при температурно-усадочных воздействиях и жестко — при ветровых нагрузках.

В зданиях продольно-стеновой конструктивной системы вертикальные нагрузки воспринимаются и передаются основанию продольными стенами, на которые опираются перекрытия, работающие преимущественно по балочной схеме. Для восприятия горизонтальных нагрузок, действующих перпендикулярно продольным стенам, необходимо предусматривать вертикальные диафрагмы жесткости. Такими диафрагмами жесткости в зданиях с продольными несущими стенами могут служить, поперечные стены лестничных клеток, торцевые, межсекционные и др. Примыкающие к вертикальным диафрагмам жесткости плиты перекрытий рекомендуется опирать на них. Такие здания рекомендуется проектировать высотой не более 17 этажей.

28.Объемно-блочные здания проектируют из опертых друг на друга несущих объемных блоков. Несущие блоки могут иметь линейное или точечное опирание. При линейном опирание нагрузка от вышерасположенных конструкций передается по всему периметру объемного блока, трем или двум противоположным его сторонам. При точечном опирание нагрузка передается преимущественно по углам объемного блока. Прочность, пространственную жесткость и устойчивость объемно-блочных зданий рекомендуется обеспечивать сопротивлением отдельных столбов объемных блоков (гибкая конструктивная система) или совместной работой столбов из объемных блоков, соединенных между собой (жесткая конструктивная система).

При гибкой конструктивной системе каждый столб объемных блоков должен полностью воспринимать приходящиеся на него нагрузки, поэтому объемные блоки соседних столбов по условиям прочности можно не соединять друг с другом по вертикальным стыкам (при этом для обеспечения звукоизоляции по контуру проемов между блоками необходимо предусматривать установку уплотняющих прокладок).

Для ограничения деформаций стыков при неравномерных деформациях основания и других воздействиях рекомендуется объемные блоки соединять между собой в уровне их верха металлическими связями и предотвращать взаимные сдвиги блоков по вертикальным стыкам в уровне цокольно-фундаментной части здания.

При жесткой конструктивной системе столбы объемных блоков должны иметь расчетные связи в уровне перекрытий и шпоночные монолитные соединения в вертикальных стыках. В зданиях жесткой конструктивной системы все столбы объемных блоков работают совместно, что обеспечивает более равномерное распределение между ними усилий от внешних нагрузок и воздействий. Жесткую конструктивную систему рекомендуется применять для зданий высотой более десяти этажей, а также при любой этажности, когда возможны неравномерные деформации основания. При жесткой конструктивной системе рекомендуется соосное расположение объемных блоков в плане здания.

Узлы объемных блоков рекомендуется проектировать так, чтобы максимально увеличить площадь опирания элементов, но при этом исключить или по возможности уменьшить влияние геометрических эксцентриситетов, возникающих от несоосности геометрических центров горизонтальных сечений стен и приложения вертикальных нагрузок в швах. Толщину растворных швов рекомендуется принимать равной 20 мм.

складки и шатры — пространственные покрытия, образованные плоскими взаимно пересекающимися элементами (рис. 9.26). Складки обычно состоят из ряда повторяющихся в определенном порядке поперек пролета элементов, опирающихся по краям на диафрагмы жест-кости. Шатры перекрывают прямоугольное в плане пространство смыкающимися кверху с четырех сторон плоскостями. Толщина плоского элемента складки должна быть не менее 1/200 пролета, высота — не менее 1/20, а ширина грани — не менее 1/5 пролета. Их применяют для зданий пролетом до 40 м.

2. разрезка наружных стен на панели. Важным этапом проектирования крупнопанельных зданий является выбор системы разрезки стен, которая зависит от конструктивной схемы, условий монтажа, вида здания и его размеров. На рис. 12.3 приведены примеры схем разрезки (членения) наружных стен на панели, применяемые в современном строительстве.

Рис. 12.3. Схемы разрезки наружных стен на панели: а - горизонтальная на одну комнату, б - то же, на две комнаты, в - то же, полосовая, г вертикальная, д — то же, полосовая

Горизонтальная схема членения (рис. 12.3, а, б, в) образуется одноэтажными панелями размером на одну комнату (с одним окном), на две комнаты и полосовая (из полосовых поясных и простеночных панелей). Вертикальная схема образуется из панелей на два зтажа (рис. 12.3, г,д): с одним окном на зтаж и полосовая из двухэтажных простеночных панелей и междуэтажных поясных панелей. В гражданском строительстве большее распространение получила горизонтальная схема разрезки стен. В несущих стенах современных панельных зда­ний в основном применяется однорядная разрезка при длине панели «на одну-две комнаты». При этой разрезке панель ограничивается как конструктив­ный элемент ячеистой системы. Ее грани совме­щаются с ребрами параллелепипеда — ячейки зда­ния. Стыки панелей позволяют надежно связать наружную стену со смежными внутренними стена­ми и перекрытиями. Панель однорядной разрезки может быть использована как элемент жест­кости. В навесных стенах наряду с однорядной ис­пользуется двухрядная разрезка. Последняя дает возможность сократить погонаж швов и упростить изготовление панелей. Применение для изготовле­ния панелей при обработке ячеистых бетонов ре­зательной технологии, полное использование вме­стимости автоклавов, особенно при малом диамет­ре, и т. п. — весьма существенные преимущества производства полносборных зданий. Использование двухрядной разрезки в несущих и самонесущих стенах зданий высотой до 5 этажей может быть экономически целесообразным при оп­ределенных технологических условиях — наличии заводской оснастки или автоклавов малого диа­метра для формовки и термической обработки па­нелей ограниченной высоты и т. п. Вертикальная разрезка применяется в навес­ных стенах как средство архитектурной вырази­тельности для активизации вертикальных членений фасада. Конструктивно оправданной она может быть в несущих и самонесущпх стенах малоэтаж­ных зданий.

отделочный слой; 6 — несущий слой; 7 — слив; 8 — подоконная доска; 9 — теплоизоляционный слой. 5.многослойные. Многослойная панель, используемая, в качестве несущего элемента. как правило, состоит из трех слоев: двух внешних и одного внутреннего. Для достижения общей несущей способности этой многослойной конструкции слои соединены между собой для образования монолитной  системы. В зависимости от формы поперечного сечения, материала и видов опирания существует большое разнообразие комбинационных возможностей (табл. 1.1). Внешние слои могут быть, например, из стали, на  основе легких сплавов металлов, дерева, армированной волокном  пластмассы, бетона или асбестоцемента, а средний слой — из пробки, резины, древесины бальзы, плотной пластмассы, вспененного полимерного  материала, а также из легкого металла в форме сот, перемычек, гофрировки или другой конструкции. Все типы многослойных панелей  характеризуются способностью внешних слоев воспринимать усилия растяжения и сжатия и низкими прочностными показателями среднего слоя на сдвиг Свойства многослойной панели в основном зависят от строения ее слоев. Общими для большинства многослойных панелей (благодаря их легкому среднему слою и жестким в большинстве случаев тонким внешним слоям) являются следующие свойства:

большая несущая способность при небольшой собственной массе; высокая усталостная прочность при переменных нагрузках;

хорошая звукоизоляция в сравнении с однородными панелями тех же массы и жесткости;

хорошее звукопоглощение при использовании для среднего слоя материала с высокими поглощающими свойствами;

хорошая теплоизоляция;

незначительное накопление тепла в стенах;

водо- и паронепроницеемость при металлических внешних слоях;

при защищенных поверхностях внешних слоев устойчивость к  погодным воздействиям и агрессивным выделениям промышленных предприятий;

возможность рационального массового производства;

быстрый, независимый от времени года монтаж готовых элементов.

14. Стыки наружных и внутренних крупнопанельных стен

Сопряжения панелей стен между собой и с перекрытиями называют стыками. Они должны быть прочными, долговечными, водо- и воздухонепроницаемыми, иметь достаточную теплозащиту и быть несложными по способу заделки.

Стыки наружных стен подразделяются на горизонтальные и вертикальные.

Горизонтальные стыки могут быть:

Плоские в панелях толщиной 400 мм. Водо-воздухонепроницаемость таких стыков обеспечивается герметизирующей мастикой, прокладкой из гернита или пороизола, слоем раствора и утепляющим вкладышем из минераловатных плит.

С противодождевым гребнем в панелях толщиной 300—350 мм. Герметизирующие, теплозащитные материалы в таких стыках — на трех плоских гранях.

Вертикальные стыки по особенностям заделки наружной части бывают:

Закрытые, защищаемые снаружи цементным раствором, герметизирующей мастикой, упругой прокладкой, а изнутри — прослойкой рубероида, утепляющим пакетом и монолитным бетоном.

Открытые с раздельными водо- и воздухоннепрницаемыми преградами. Водоотбойная лента, не допуская влагу вовнутрь стыка, одновременно отводит ее наружу. Небольшие затраты труда, возможность замены водоотбойных лент — вот главное преимущество таких стыков.

Дренированные, причем снаружи они защищены так же, как и закрытые стыки. Однако их конструкция допускает поэтажный отвод влаги, попавшей внутрь стыка. Влага через декомпрессионный канал стекает вниз, здесь через дренажное отверстие на пересечении вертикального и горизонтального стыков водоотводящим фартуком выводится наружу. Таким образом дренированный стык по способу заделки относится к закрытым, а по характеру работы — к открытым.

Закрытые стыки панелей на­ружных стен: а — вертикальный, б — горизонтальный; 1 — защитное покрытие, 2 — герметизи­рующая мастика, 3 — упругая прокладка, 4 — воздухозащитная проклейка, 5 — термовкладыш, 6 — бетон, 7 — наружная стеновая панель, 8 — внутренняя стено­вая панель, 9 — панель перекрытия

Рис. Конструкции связей.

б) замоноличиваемая типа петля-скоба

1-панель наружной стены; 2-панель внутренней стены; 3-петлевой арматурный выпуск; 4-стыковая накладка; 5-бетон замоноличивания; 6-стальная закладная деталь; 7-стальная скоба; 8-панель перекрытия; 9- болтовая связь;10- стальной клин; 11-закладные связи самофиксации; 12- продольная арматура стыка.

13. По способу обеспечения изолирующих свойств стыки панелей подразделяются на закрытые, дренированные и открытые. Применение каждого из названных типов стыков следует предусматривать в соответствии с климатическими условиями района строительства и конструкцией наружных стеновых панелей.

Конструкции горизонтальных и вертикальных стыков следует предусматривать однотипными, например, не допускается проектировать вертикальные стыки открытыми, а горизонтальные закрытыми и наоборот.

Заделка горизонтального «открытого» стыка

панели наружных стен;

  1. покрытие грунтовочным составом;

  2. герметизирующий и утепляющий вкладыш;

  3. утепляющий вкладыш

  4. утепляющий вкладыш.

26. Междуэтажные перекрытия В крупнопанельных жи­лых домах применяются сборные железобетонные перекрытия следующих типов:

  • из сплошных железобетонных плит;

  • из сплошных плит с ребрами по контуру;

  • двухслойные из ребристых плит (плит с подшивным по­толком);

  • из многопустотных настилов (рис. 2.10).

 

Рис. 2.10. Многопустотные панели перекрытий: а — с круглыми пустотами; б — изготавливаемые на установках с бетони­рующими комбайнами (1 — верхний слой; 2 — нижний слой; 3 — средний слой); в — с овальными пустотами.

Сборные железобетонные плиты изготовляются двух типов: с гладкими потолками и с ребрами. Плиты с гладкими потолками: сплошного сечения толщиной 14... 16 см, многопустотные плиты высотой 22 и 30 см, коробчатые настилы. Первые применяются во всех видах зданий, где необходимо получить гладкие потолки. Ребристые применяют чаще в производственных зданиях. Они экономичны, особенно при больших нагрузках на перекрытия, и удобны тем, что позволяют использовать межреберное пространство для размещения труб воздуховодов, электрических кабелей и т, п.

В жилищном строительстве наиболее простой на сегодня и рациональной является конструкция междуэтажного перекрытия в виде сплошной плоской железобетонной плиты толщиной 16 см

Рисунок 3. Много

этажное каркасное здание с безбалочными перекры

тиями

21.Конструктивной основой высотных зданий является сталь­ной, железобетонный или комбинированный каркас с про­странственным ядром жесткости или плоскими диафрагмами — связями.  При железобетонном каркасе или металлическом, но обетонированном, монтаж последующих ярусов возможен только после заделки стыков колонн, обетонирования металлических колонн нижних ярусов и набора бетоном стыков не менее 70% марочной прочности.

В большинстве высотных зданий предусмотрено ядро жест­кости, которое воспринимает горизонтальные нагрузки от при­мыкающих частей здания и обеспечивает устойчивость и про­странственную жесткость всего здания в процессе монтажа и эксплуатации. В некоторых зданиях сначала выполняют монтаж ядра жесткости, например, лифтовой шахты до проектной от­метки, а затем — возведение остальных конструктивных эле­ментов (рис. 15.1).

Рис. 15.1. Схемы высотных зданий: а — со стальным ядром жесткости; б — с железобетонным каркасом; 1 — ядро жесткости; 2 — смонтированная часть каркаса; 3 — монтируемая часть каркаса

Ядро жесткости чаще выполняют в монолитных конструк­циях, обычно бетонирование ядра опережает монтаж каркаса на 1...2 яруса. Для надежного соединения каркаса к ядру зда­ния в стенках ядра жесткости должны быть оставлены штрабы, проемы с оголенными стержнями арматуры для крепления к ним балок каркаса сварными или болтовыми соединениями. Это очень трудоемко, но гарантирует, что монолитное ядро сразу начинает воспринимать горизонтальные нагрузки уста­новленной части каркаса.

31. плоскостные большепролетные конструкции ….К несущим конструкциям покрытий, работающим в одной плоскости, относятся балки, фермы, рамы и арки Рис. 24. Несущие конструкции для перекрытия залов: 1 – односкатная балка; 2 – двускатная балка; 3 – решетчатая балка; 4 – сегментная раскосная ферма; 5 – арочная безраскосная ферма

Сечение балок обычно применяют двутавровое. По архитектурным требованиям нежелательно оставлять в интерьере балки открытыми, поэтому чаще всего на нижнюю полку двутавров укладывают плиты, чтобы создать гладкий потолок. В качестве несущих элементов покрытий зальных помещений часто при-меняют различного рода сквозные фермы (треугольные, полигональные, с параллельными поясами, сегментные или арочные (

Пролеты ферм, выполненных из сборного железобетона, в большинстве случаев не превышает 30 м, так как при больших пролетах перевозка ферм затруднительна. Поэтому, сборные железобетонные фермы больших пролетов целесообразно сваривать на местеих отдельных элементов Целесообразно решение покрытий достигается также при применении длинномерных сборных настилов, укладываемых по продольным балкам, опертым на колонны, или по несущим продольным стенам. Для создания крупных общественных помещений могут применяться одноэтажные рамные конструкции, в которых ригели жестко соединены с колоннами. Железобетонные рамы больших пролетов применяют редко ввиду их массивности и высокой стоимостиВ большепролетных общественных зданиях применение деревянных клееных рам дает значительное уменьшение материалоемкости конструкций при простоте изготовления Металлические рамы сплошного сечения целесообразны только прсравнительно небольших пролетах (до 24 м), решетчатые же рамы могут применяться в пролетах до 150 м Рамные конструкции могут иметь разнообразные формы с прямыми, ломанными и криволинейными очертаниями, что в ряде случаев позволяет получить определенный архитектурный эффект. Они допускают устройство крупных нависающих консолей, например, на железнодорожных перронах, посадочных площадках аэровокзалов, над трибунами стадионов, входами в крупныеобщественные здания

Арочная конструкция представляет собой брус криволинейного (цир-кульного, параболического и др.) очертания. Кривизна арки обеспечивает возможность ее статической работы преимущественно на осевые (сжимающие) усилия, но вызывает (в отличие от балочных конструкций) не только вертикальные, но и горизонтальные реакции опор, так называемый распор

29. Монолитные и сборно-монолитные здания

Одним из путей повышения качественного уровня строительства, его эффективности, повышения архитектурного разнообразия и выразительности застройки является расширение применения монолитного железобетона.

Монолитные и сборные железобетонные конструкции не следует противопоставлять друг другу. Так, область рационального применения сборных железобетонных конструкций — массовое строительство жилых общественных и промышленных зданий, где основной тенденцией является повышение индустриальности строительства, заводское производство изделий и их поточный монтаж на строительной площадке.

Широкая область гражданского и промышленного строительства где рационально применение монолитного железобетона.

Это — цельномонолитные гражданские и производственные здания, которые по своему назначению, градостроительному акцентному положению не могут быть выполнены из стандартных сборных железобетонных конструкций; сборно-монолитные конструкции много этажных зданий — каркасных или панельных с монолитными ядрами жесткости; монолитные плоские безбалочные перекрытия под тяжелые нагрузки, необходимые, например, для объектов продовольственной програм мы — холодильников, овоще-, фрукто-хранилиш, мясокомбинатов и т. д.; отдельные нестандартные элементы общественных и производственных зданий — опорные конструкции пор талы, перекрытия, амфитеатры и балконы и др.; большепролетные конструкции; элементы реконструкции существующих зданий—жилых, обще ственных и производственных. Отли чительной особенностью таких решений гражданских зданий является четкость и простота конструктивных форм определяющая простоту и индустриальность возведения зданий: колонны — круглого или прямоугольного сечения; перекрытия — в основном безбалочные, обеспе чивающие свободу в расстановке перегородок, т. е. свободу плани ровочных решений; вертикальные диафрагмы жесткости в таких зданиях упрощают конструкцию узлов сопряжения перекрытий с колоннами, работающими в этом случае только на вертикальные нагрузки; в перекрытиях укладываются все разводки труб для электро- и слаботочных устройств, что исключает необходимость в устройстве подвесных потолков или подсыпок под полы, в которых обычно размещают трубы.

Невысокая прочность и сейсмостой кость при большой массе (напр. Проч ность бетона в 10 раз меньше проч ности стали) Высокая трудоемкость (в сравнении с каркасно-панельным строительством)

18. 19.В каркасных конструктивных системах основными вертикальными несущими конструкциями являются колонны каркаса, на которые передается нагрузка от перекрытий непосредственно (безригельный каркас) или через ригели (ригельный каркас). Прочность, устойчивость и пространственная жесткость каркасных зданий обеспечивается совместной работой перекрытий и вертикальных конструкций. В зависимости от типа вертикальных конструкций, используемые для обеспечения прочности, устойчивости и жесткости, различают связевые, рамные и рамно-связевые каркасные системы (рис. 4).

Рис. 4. Каркасные конструктивные системы

а, б — связевые с вертикальными диафрагмами жесткости;

в — то же, с распределительным ростверком в плоскости вертикальной диафрагмы жесткости; г — рамная; д — рамно-связевая с вертикальными диафрагмами жесткости; е то же, с жесткими вставками

1 — вертикальная диафрагма жесткости; 2 — каркас с шарнирными узлами;

3 — распределительный ростверк; 4 — рамный каркас; 5 жесткие вставки

При связевой каркасной системе применяется безригельный каркас или ригельный каркас с нежесткими узлами ригелей с колоннами. При нежестких узлах каркас практически не участвует в восприятии горизонтальных нагрузок (кроме колонн, примыкающих к вертикальным диафрагмам жесткости), что позволяет упростить конструктивные решения узлов каркаса, применять однотипные ригели по всей высоте здания, а колонны проектировать как элементы, работающие преимущественно на сжатие.

Такое решение сборной перекрестно-ребристой конструкции может быть выполнено не только из железобетона, но также из элементов металлической фермы или деревянных щитовых элементов (рис. XII.18, в).

Перекрестно-стержневые системы изготовляются исключительно из металла, из элементов в виде труб или проката. Трубчатые конструкции проще в монтаже, так как могут быть смонтированы простым ввинчиванием оголовников с нарезкой в многогранный узловой элемент, в то время как элементы из проката соединяются через фасонки на болтах или на сварке.

В плане перекрестно-стержневое покрытие представляется двумя сетками с квадратными или треугольными ячейками, из которых нижняя сетка сдвинута относительно верхней на половину ячейки внутрь пролета (рис. XII.18). Узлы верхней и нижней сеток соединяются между собой наклонными диагональными элементами — раскосами. В целях лучшего распределения опорных усилий в конструкции над точечной опорой предусматривается капитель из четырех наклонных раскосов или из перекрещивающихся прокатных балок.

трехслойные — несущие, навесные и самонесущие с пли­тами из керамзитобетона, тяжелого бетона с утеплителем между ними из пенопласта, цементного фибролита, минераловатных плит, пеногазобетона, легкобетонных вкладышей и с жесткими ребрами-диафрагмами (рис. 2.7);

 Рис. 2.7. Трехслойная стеновая панель: 1 — сварные каркасы, покрытые бетоном; 2 — монтажные петли; 3 — заклад­ные детали; 4 — арматурные сетки; 5 — утеплитель; 6 — тяжелый бетон Трехслойные панели состоят из двух слоев конструктивного железобетона (внутреннего — несущего и наружного -— облицовочного) и заключенного между ними утепляющего слоя с плотностью, не превышающей 400 кг/м3. Они имеют достаточно высокую несущую способность; это расширяет область их применения для сильно нагруженных стен, В теплотехническом отношении эти панели за счет эффективного утеплителя достаточно совершенны.

Недостаток многослойных панелей по сравнению с однослойными — повышенная сложность и трудоемкость изготовления, в процессе которого в форму должны быть уложены три слоя: наружный и внутренний армированные из тяжелого бетона и утеплитель между ними. Для того чтобы обеспечить требуемые эксплуатационные качества панелей, все эти материалы должны быть уложены с точным соблюдением проектных размеров.

Наиболее рациональная конструкция трехслойной панели — с увеличенной толщиной внутреннего бетонного слоя до 8... 10 см (вместо ранее применяемого 4 ,, .5 см).

Толщина наружного слоя трехслойной панели (включая отделочный слой) должна быть не менее 60 мм.

3. панельные стены и требования к ним. В крупнопанельных жилых домах применяются пане­ли наружных стен трех типов: однослойные, двухслойные и трехслойные

  • 4.однослойные (рис. 2.5) — легкобетонные несущие и самоне­сущие с заполнителем в виде гравия и щебня из керамзита, перли­та, термозита, естественной пемзы, котельного и вулканического шлака; самонесущие из автоклавного пенобетона, газобетона, га­зосиликата; однослойные из неавтоклавного газобетона, газозолобетона; Преимущества однослойной конструкции, в частности керамзитобетонной, в ее технологичности — возможности изготовления панелей механизированным способом с минимальным использованием ручного труда. Керамзитобетон в сравнении с другими легкими бетонами имеет наименьшую плотность при заданной прочности. Керамзитовый гравий считается основным и лучшим по качеству искусственным пористым заполнителем.

  • Толщина наружных стен из керамзитобетона 300...350 мм (в зависимости от климатических условий) практически равна толщине стен из ячеистых бетонов и близка к толщине трехслойных железобетонных панелей с эффективным утеплителем.

  • В теплотехническом отношении однослойная конструкция отличается от многослойной отсутствием теплопроводных включений в виде железобетонных ребер, т. е. более однородна.

двухслойные (рис. 2.6) — несущие и самонесущие вибро­ирпичные с плитным утеплителем;

Рис. 2.6. Двухслойная стеновая панель из легкого бетона: 1 — закладная деталь для крепления радиаторов; 2 — закладные детали; 3 — монтажные петли; 4 — арматурный каркас; 5 —

9.конструкции стыков внутренних панельных стыков.

Сварные связи выполняют путем сварки арматурных выпусков из панелей или приварки накладок к ним и к закладным деталям панелей. Эта конструкция - связей универсальна: она может применяться при различно этажности зданий, в обычных и сложных грунтовых условиях, в сейсмостой- ком строительстве.

Сварные связи являются основным конструктивным решением растянутых соединений во внутренних конструкциях зданий. В наружных стенах где требуется трудоемкая защита сварных связей от атмосферной коррозии часто применяют другие типы связей.

Связи типа петля — скоба образуются установкой стальных скоб в петлевые арматурные выпуски панели Прочность и деформативность таких связей находятся в прямой зависимости от прочности бетона замоноличивания, препятствующего разгибанию выдергиванию концов скоб из петель. Связи петля — скоба менее трудоемки, чем сварные, но уступают последним в прочности. Поэтому их применяют в зданиях с малым шагом поперечных стен высотой не более 12 этажей в обычных условиях строительства. По высоте этажа устраивают 2—3 такие связи.

Рис. Конструкции связей.

а) сварная

1-панель наружной стены; 2-панель внутренней стены; 3-петлевой арматурный выпуск; 4-стыковая накладка; 5-бетон замоноличивания; 6-стальная закладная деталь; 7-стальная скоба; 8-панель перекрытия; 9- болтовая связь;10- стальной клин; 11-закладные связи самофиксации; 12- продольная арматура стыка.

Открытые стыки панелей на­ружных стен: а — вертикальный, б — горизонтальный; 1 — водоотбойная лента, 2 — деком-прессионный канал, 3 — воздухозащитная проклейка, 4 — термовкладыш, 5 — бетон, 6 — наружная стеновая па­нель, 7 — внутренняя стеновая панель, 8 — фартук, 9 — панель перекрытия, 10 — упругая прокладка, 11 — цемент­ный раствор

15.стыки по способу сопряжения . Сварные связи выполняют путем сварки арматурных выпусков из панелей или приварки накладок к ним и к закладным деталям панелей. Эта конструкция - связей универсальна: она может применяться при различно этажности зданий, в обычных и сложных грунтовых условиях, в сейсмостой- ком строительстве.

Сварные связи являются основным конструктивным решением растянутых соединений во внутренних конструкциях зданий. В наружных стенах где требуется трудоемкая защита сварных связей от атмосферной коррозии часто применяют другие типы связей.

Связи типа петля — скоба образуются установкой стальных скоб в петлевые арматурные выпуски панели Прочность и деформативность таких связей находятся в прямой зависимости от прочности бетона замоноличивания, препятствующего разгибанию выдергиванию концов скоб из петель. Связи петля — скоба менее трудоемки, чем сварные, но уступают последним в прочности. Поэтому их применяют в зданиях с малым шагом поперечных стен высотой не более 12 этажей в обычных условиях строительства. По высотеэтажа устраивают 2—3 такие связи.

1-панель наружной стены; 2-панель внутренней стены; 3-петлевой арматурный выпуск; 4-стыковая накладка; 5-бетон замоноличивания; 6-стальная закладная деталь; 7-стальная скоба; 8-панель перекрытия; 9- болтовая связь;10- стальной клин; 11-закладные связи самофиксации; 12- продольная арматура стыка.

22.Многоэтажные промышленные здания проектируют, как правило, каркасными с навесными стеновыми панелями. Типовые конструкции для таких зданий разработаны с балочными и безбалочными перекрытиями.

При балочных перекрытиях (рис. 1) сетка колонн принята 6x6 или 9x6 м. Высоты этажей равны 3,6; 4,8; 6 и 7,2 м. При необходимости верхний этаж предусматривается пролетом 18 м (рис. 1б), в нем возможно расположение мостовых кранов грузоподъемностью 10 т или подвесного транспорта. При устройстве мостовых кранов высота верхнего этажа принимается равной 10,8 м, а при подвесном транспорте - 7,2 м. Основными несущими конструкциями в таких зданиях являются (рис. 2): колонны с консолями (табл. 1), по низу жестко заделываемые в фундаментные башмаки стаканного типа, ригели перекрытий (табл. 2) и покрытий, плиты многопустотные или ребристые (табл. 3), навесные панели стен.

Рисунок 1. Поперечный разрез многоэтажных промышленных зданий с балочными перекрытиями: а - без мостовых кранов; б - с мостовыми кранами в верхнем этаже

Рисунок 2. Схема каркасного здания с балочным перекрытием: 1 - крайняя колонна с консолями; 2 - ригель перекрытия; 3 - стык колонн; 4 - многопустотные плиты перекрытия; 5 - ригель покрытия; 6 - ребристые плиты покрытия; 7 - средняя колонна с консолями; 8 - ребристые плиты перекрытия (вариант); 9 - фундаментные башмаки

В зданиях с безбалочными перекрытиями (рис. 3) железобетонная плита опирается на колонны, имеющие, как правило, капители, уменьшающие рабочий пролет плиты и распределяющие опорную реакцию на значительную поверхность плиты. Такие перекрытия целесообразны в зданиях с большими равномерно распределенными нагрузками и квадратной сеткой колонн (например, 6x6 м). При временной нагрузке на перекрытие 10 кН/м2 и более безбалочные перекрытия экономичнее балочных. Их преимущество состоит также в том, что благодаря меньшей конструктивной высоте высота здания и расход стеновых материалов уменьшается. Безбалочные перекрытия применяют в зданиях холодильников, мясокомбинатов, складов и др. Сборные безбалочные перекрытия состоят из капителей, опирающихся по периметру среднего отверстия на выступы колонн, надколенных панелей, укладываемых в обоих направлениях на капители колонн и пролетной панели, опирающейся по контуру на подрезки надколенных панелей (рис. 4).

30. возведение зданий методм подъема этажей. В основу классификации методов возведения зданий из моно­литного железобетона положен способ выполнения несущих кон­струкций, так как другие части здания при различных методах возведения изготавливают обычным способом. Наиболее распро­странены следующие индустриальные методы возведения зданий из монолитного железобетона путем бетонирования: IV — горизонтальных конструкций в виде пакета плит пере­крытий и обустройство этажей на уровне земли с последующим подъемом готовых этажей на проектные отметки по сборным сталь­ным или железобетонным колоннам (метод подъема этажей); Технология работ при подъеме этажей

На уровне земли (или на перекрытии над подвалом) изготавливают в виде пакета одну за другой плиты перекрытий всех этажей и кровли. Затем готовую плиту покрытия с уже выполненной кровлей поднимают и закрепляют в верхней части первого яруса колонн. Осуществляют монтаж верхнего этажа на плите перекрытия, находящейся на земле, и затем поднимают полностью смонтированный этаж под закрепленную плиту кровли. В той же последовательности осуществляют монтаж и подъем следующих этажей.

Процесс подъема готовых этажей и последовательного монтажа конструкций сверху вниз повторяют до тех пор, пока не будет смонтировано все здание. Эту схему применяют, если стены и перегородки здания сборные. Схема подъема этажей аналогична подъему перекрытий и предусматривает последовательный подъем каждого этажа, начиная с верхнего. Однако, в отличие от применяемой схемы одновременного подъема нескольких плит перекрытий, возможно осуществлять подъем только одного этажа до проектного или промежуточного положения .

Когда верхний этаж поднят на проектные отметки, его закрепляют к ядру жесткости клиньями или винтовыми упорами, жестко соединяют по верху воротников перекрытий с колоннами.

25. ригели и их стыки в каркасных зданиях . Узел сопряжения ригеля с колонной.

Традиционным решением узла, общепринятым в каркасах промышленных и гражданских зданий, служит опирание ригеля на выступающую консоль. Такая конструкция узла мало приемлема в гражданских сооружениях, так как значительно ухудшает интерьеры помещений.

Рис. 91. Стыки сборных железобетонных каркасов: 1 - колонна; 2 - прогоны; 3 - балка-связь; 4 - торцовый лист; 5 - центрирующая прокладка; 6, 7 и 8 - закладные детали; 9 - консоль: 10 - сварка: 11 - обетонка; 12 - основная арматура стыка; 13 - арматура анкеровки торцового листа; 14 - армирование зоны стыка

В отличие от традиционного узла в унифицированном каркасе сопряжение ригеля с колонной решено со скрытой консолью (рис. XV. 16).

Ригели каркаса — предварительно напряженные высотой 4м 5 см, таврового сечения, что определяется стремлением осуществить надежное опирание плит перекрытий и одновременно обеспечить наименьшую возможную высоту выступающей части ригеля. Ширина ригеля понизу принята по архитектурным соображениям равной ширине колонн (благодаря этому в интерьере ригель с колонной воспринимается как единая рама).

Стенки жесткости представляют собой поэтажные железобетонные стены толщиной 18 см, с полками, заменяющими полки ригелей, и без них, жестко связанные с колоннами. Такая диафрагма жесткости работает на восприятие как вертикальных, так и горизонтальных ветровых нагрузок по схеме консольной составной балки, защемленной в фундаменте. Нагрузки передаются на них перекрытиями, представляющими собой жесткие горизонтальные диски.

27. КОНСТРУКТИВНЫЕ СХЕМЫ ЗДАНИЙ ИЗ ОБЪЕМНЫХ ЭЛЕМЕНТОВОбъемный блок представляет собой пространственную конструкцию, изготовленную в заводских условиях, обладающую необходимой прочностью, жесткостью, устойчивостью.Конструктивные схемы здания с применением объемных блоков делят на блочные, панельно-блочные, каркасно-блочные и блочно-ствольные Объемно-блочные системы используют в основном для жилых домов, а панельно-блочные — для зданий общественного назначения в которых требуются большие безопорные площади, и реже для жилых домов. Каркасно-блочные и блочно-ствольные системы используют для уникальных жилых домов и общественных зданий большой этажности, а также для зданий санаторно-курортного назначения.

В зависимости от типа пространственных блоков возможны различные конструктивные схемы расстановки объемных элементов с объемными блоками на отдельную комнату и на квартиру.

Пространственные блоки могут быть монолитными и сборными из прокатных панелей, собираемыми на заводе.В монолитных блоках одну из шести граней блока формуют отдельно, поэтому блоки получили условные названия: типа «колпак», «стакан» и «труба» В блоках типа «стакан» монолитно связаны четыре стены с полом, но без потолка, в блоках типа «колпак» - четыре стены с потолком, но без пола.Сопряжение панели пола в объемных элементах типа «колпак» осуществляют железобетонными шпонками и сваркой закладных металлических деталей.

Рис183. Монолитные пространственные блоки:

а-типа «колпак»; б - типа «стакан»; в -типа «труба»; г - узел блоков типа «стакан»; 1 - панель пола; 2 -панель потолка; 3 - объемный блок; 5 - шпонка; 6 -раствор; 7-жгут «изол» на мастике «изол»

32. Перекрестные системы

Перекрестные системы покрытия состоят из несущих линейных элементов, пересекающихся в плане под углом 90 или 60 градусов. При этом если конструкция состоит из несущих элементов, расположенных параллельно сторонам квадрата или прямоугольника, и составляет сетку из квадратных ячеек, то такая конструкция называется ортогональной. Если та же квадратная сетка расположена к контурам покрытия под углом 45 градусов, то такая конструкция называется диагональной. Сетку с треугольной формой ячеек, стороны которых параллельны сторонам контура покрытия, называют треугольной.

Наличие несущих пересекающихся элементов позволяет нагрузку на покрытие передавать на опоры не в одной вертикальной плоскости, как в плоскостных конструкциях, а сразу в двух и даже в трех вертикальных плоскостях. Это существенно уменьшает величину усилий и прогибов

Перекрестно-ребристые железобетонные покрытия могут быть выполнены и в монолите, однако такое решение невыгодно из-за огромного расхода древесины на леса и опалубку. Более прогрессивным и экономически целесообразным является монтаж ребристого покрытия из сборных коробчатых элементов (рис. XII, 18, а, б).

Коробчатые элементы представляют собой ящики с дном, повернутым кверху, которые монтируются непосредственно на лесах. При небольших пролетах (до 24 м) они могут быть смонтированы также и на земле, а затем кранами подняты в проектное положение. По нижней кромке эти ящики обычно имеют выступ, которым примыкают друг к другу, оставляя между стенками зазор в 10... 15 см, куда закладывается соединяющая их арматура. После заполнения зазоров высокопрочным бетоном и его отвердения конструкция превращается в жестко замоноличенное перекрестно-ребристое покрытие.

Перекрестно-ребристое покрытие может быть создано и непосредственным монтажом отрезков ребер длиной в две ячейки. При этом каждый отрезок ребра крепится к двум, перпендикулярно стоящим к ним ребрам на половине длины.

Горизонтальные нагрузки от перекрытий воспринимаются и передаются основанию вертикальными диафрагмами жесткости в виде стен или сквозных раскосных элементов, поясами которых служат колонны (см. рис. 4). Для сокращения требуемого количества вертикальных диафрагм жесткости их рекомендуется проектировать непрямоугольной формы в плане (уголковой, швеллерной и т.п.). С той же целью колонны, расположенные в плоскости вертикальных диафрагм жесткости, могут объединяться распределительными ростверками, расположенными в верху здания, а также в промежуточных уровнях по высоте здания.

В рамной каркасной системе вертикальные и горизонтальные нагрузки воспринимает и передает основанию каркас с жесткими узлами ригелей с колоннами. Рамные каркасные системы рекомендуется применять для малоэтажных зданий.

В рамно-связевой каркасной системе вертикальные и горизонтальные нагрузки воспринимают и передают основанию совместно вертикальные диафрагмы жесткости и рамный каркас с жесткими узлами ригелей с колоннами. Вместо сквозных вертикальных диафрагм жесткости могут применяться жесткие вставки, заполняющие отдельные ячейки между ригелями и колоннами. Рамно-связевые каркасные системы рекомендуется применять, если необходимо сократить количество диафрагм жесткости, требуемых для восприятия горизонтальных нагрузок.

В каркасных зданиях связевой и рамно-связевой конструктивных систем наряду с диафрагмами жесткости могут применяться пространственные элементы замкнутой формы в плане, называемые стволами. Каркасные здания со стволами жесткости называют каркасно-ствольными.

7.узлы и стыки внутренних панелей. платф. Платформенный стык, особенностью которого является опирание перекрытий на половину толщины поперечных стеновых панелей, т. е. ступенчатая передача усилий, при которой усилия с панели на панель передаются через опорные части плит перекрытий;

Платформенный стык наиболее простой в выполнении и достаточно надежный при высоте панельных домов в пределах 25 этажей.

Платформенный стык (рис. 7) рекомендуется в качестве основного решения для панельных стен при двухстороннем опирании плит перекрытий, а также при одностороннем опирании плит на глубину не менее 0,75 толщины стены. Толщины растворных швов рекомендуется назначать равными 20 мм; размер зазора между торцами плит перекрытий принимается не менее 20 мм.

контактный стык (консольный) с опиранием перекрытий на выносные консоли и непосредственной передачей усилий с панели на панель;

Контактный стык (рис 9) рекомендуется применять при опирании плит перекрытия на консольные уширения стен или с помощью консольных выступов («пальцев») плит. При контактных стыках плиты перекрытий допускается опирать на стены без раствора (насухо). В этом случае для обеспечения звукоизоляции полость между торцами плит и стенами необходимо заполнять раствором и предусматривать арматурные связи, превращающие сборное перекрытие в горизонтальную диафрагму жесткости С опиранием на консоли

С опиранием на пальцы

12.2,б); с пространственным каркасом (рис. 12.2, в); с неполным поперечным каркасом и несущими наружными стенами (рис. 12.2, г}; с опиранием плит перекрытия по четырем углам непосредственно на колонны (безрнгельный вариант; рис. 12.2,д); с опиранием панелей на наружные панели и на две стойки по внутреннему ряду (рис, 12.2, г). Принятие той или иной конструктивной схемы зависит от вида проектируемого здания, его этажности и других факторов. Так, крупнопанельные жилые дома проектируют, как правило, бескаркасными. Эти дома по сравнению с каркасными позволяют уменьшить число типоразмеров сборных элементов, сократить расход металла, упростить процесс монтажа, сократить трудозатраты, избежать появления выступающих элементов (колонн и ригелей) в интерьере помещений и др. Однако каркасные здания по сравнению с бескаркасными имеют меньший расход материалов на 1 м2 жилой площади, большую жесткость и устойчивость здания, что особенно важно для высотных зданий. Эти схемы особенно эффективны для общественных зданий.

10. стыки наружных панельных стен.

Горизонтальные стыки наружных панелей бывают с противодождевым барьером и без него, плоским и внахлестку. Стыки могут быть защищенными водоотбойными лентами, заделанными уплотняющими материалами или закрытыми снаружи

12.14. Конструкция горизонтального стыка однослойных стеновых панелей: 1 — железобетонная панель перекрытия, 2 — цементный раствор, 3 — стеновая панель, 4 — противодождевой барьер, 5 — герметизирующая мастика (тиоколовая или полиизобутиленовая УМС-50), 6 — пороизол или гернит, 7 — термовкладыш в гидроизоляционной оболочке

Для устройства горизонтальных стыков верхнюю стеновую панель укладывают на нижнюю на цементном растворе. При этом через горизонтальный шов, плотно заполненный раствором, дождевая вода может проникать главным образом вследствие капиллярного подсоса воды через раствор. Ног почему принята такая сложная геометрия горизонтального стыка (рис. 12.14). В нем устраивают гак называемый противодо-ждевой барьер или зуб в виде гребня, идущего сверху вниз. На наклонной части раствор прерывают и создают воздушный зазор, в пределах которого подъем влаги  по  капиллярам прекращается. Таким образом, мы видим, что для обеспечения нормальных эксплуатационных качеств стен из крупных панелей для устройства стыков применяют различные материалы, имеющие самые разнообразные физико-механические свойства: крепежные (сталь), утепляющие (минераловатные вкладыши), гидроизолирующие (рубероид или изол), связующие и уплотняющие (бетон и раствор), герметизирующие (пороизол или гернит и мастики). Все эти материалы имеют разную долговечность и часто гораздо меньшую срока службы здания. Вот почему при конструировании стыков панелей и их исполнении необходимо особое внимание уделять возможности обеспечения высокого качества производства строительных работ, применяя для этого материалы только с хорошими физико-механичес кими свойствами.

11.стыки наружных панельных стен Стыки и связи между панелями являются наиболее ответственными элементами конструкции, определяющими эксплуатационные качества здания. При этом важно обеспечивать изоляцию стыков от протечки при дождях с ветром загоняющим влагу внутрь. Для предотвращения этого во всех горизонтальных швах необходимо устраивать гребни и сдои изоляции (рис. XVII.3). В зависимости от   методов  водозащиты существует три типа стыков: закрытые, дренирующие и открытые. Первые два близки между собой: их внешнее устье закрыто шнуровыми прокладками и мастикой; в дренирующей же предусмотрена также полость для стекания просочившейся влаги.

Одним из широко распространенных решений является конструкция так называемого открытого вертикального стыка (рис. XVII.3). Для защиту стыка от проникновения влаги в первый паз вводится наиритовая или неопреновая лента, которая может заменяться в процессе эксплуатации зданий. Влага, проникающая на ленту во время косого дождя, стекает по ней и отводится поэтажно на поверхность стеньг. С внутренней стороны панели имеется полость, в которую устанавливают утепляющий пакет и производят замоноличивание стыка бетоном.

12. Рекомендуется применять "сухие" стыки "внахлестку" с заведением концов панелей наружных стен смежных пролетов друг за друга (рис. 7). Соединение панелей наружных и внутренних стен при этом может осуществляться с помощью электросварки или накладок, прикрепленных болтами к гайкам, приваренным к закладным деталям.

Сухой" стык панелей наружных стен внахлест:

1 - панель наружной стены; 2 - панель внутренней стены; 3 - пакля, смоченная в гипсовом растворе; 4 - гипсовый раствор; 5 -уплотняющая прокладка; 6- герметизирующая мастика; 7 - закладная деталь; 8 - накладная соединительная деталь

Рис. Вертикальный стык наружныхтрехслойных стеновых панелей внахлестку;

1 — наружные стеновые панели; 2 — внутренняя стеновая панель; 3 — колодец стыка; 4 — стальные соединительные элементы (коротыши и закладные детали).

Соединения внахлестку называют такие, в которых свариваемые элементы, частично находят друг на друга (схема выше, б). Эти соединения широко применяют для сварки листовых конструкций небольшой толщины (2-5 мм), в решетчатых и других видах конструкций. Разновидностью соединений внахлестку являются соединения с накладками с целью усиления стыков.

Соединения внахлестку с накладками просты, но менее экономичны по расходу металла и вызывают резкую концентрацию напряжений, поэтому их редко используют при переменных и динамических нагрузках, а так же при низкой температуре.

16.Болтовые связи аналогичны по металлоемкости сварным, менее трудоемки, но более деформативны при отсутствии натяжения. Применяются в обычных условиях строительства.

Замковая связь самофиксации образуется насадкой при монтаже жестой консольной закладной детали в виде горизонтального разомкнутого кольца («замок») в одной панели на вертикальный стальной стержень, закрепленый на жесткой консольной закладной детали в другой панели. Замковая связь обладает необходимой монтажной жесткостью, что позволяет устанавливать панели без временных креплений. Являясь одновременно монтажной и рабочей, замковая связь позволяет ускорить монтаж и обеспечить некоторое сокращение расхода стали и труда. Благодаря ее жесткости допускается устраивать связь самофиксации только в одном уровне по высоте этажа. Применяется в обычных условиях строительства.

Замок

1-панель наружной стены; 2-панель внутренней стены; 3-петлевой арматурный выпуск; 4-стыковая накладка; 5-бетон замоноличивания; 6-стальная закладная деталь; 7-стальная скоба; 8-панель перекрытия; 9- болтовая связь;10- стальной клин; 11-закладные связи самофиксации; 12- продольная арматура стыка.

Болт

17. конструктивные схемы бескаркасных зданий.

Стены, в зависимости от воспринимаемых ими вертикальных нагрузок, подразделяются на несущие, самонесущие и ненесущие.

Несущей называется стена, которая помимо вертикальной нагрузки от собственного веса, воспринимает и передает фундаментам нагрузки от перекрытий, крыши, ненесущих наружных стен, перегородок в т.д.

Самонесущей называется стена, которая воспринимает и передает фундаментам вертикальную нагрузку только от собственного веса (включая нагрузку от балконов, лоджий, эркеров, парапетов и других элементов стены).

Ненесущей называется стена, которая поэтажно или через несколько этажей передает вертикальную нагрузку от собственного веса на смежные конструкции (перекрытия, несущие стены, каркас).

Внутренняя ненесущая стена называется перегородкой

В зависимости от схемы расположения несущих стен в плане здания и характера опирания на них перекрытий (рис. 3) различают следующие конструктивные системы:

перекрестно-стеновая с поперечными и продольными несущими стенами;

поперечно-стеновая — с поперечными несущими стенами;

продольно-стеновая — с продольными несущими стенами.

Рис. 3. Стеновые конструктивные системы

а — поперечно-стеновые; б — перекрестно-стеновые;

в — продольно-стеновые с перекрытиями

I — малопролетными; II — среднепролетными; III — крупнопролетными

1 — ненесущая стена; 2 — несущая стена

В зданиях перекрестно-стеновой конструктивной системы наружные стены проектируют несущими или ненесущими (навесными), а плиты перекрытий — как опертые по контуру или трем сторонам. Высокая пространственная жесткость многоячейковой системы, образованной перекрытиями, поперечными и продольными стенами, способствует перераспределению в ней усилий и уменьшению напряжений в отдельных элементах. Поэтому здания перекрестно-стеновой конструктивной системы могут проектироваться высотой до 25 этажей.

В зданиях поперечно-стеновой конструктивной системы вертикальные нагрузки от перекрытий

33. вантовые и тентовые большепр. Констр покрытий

На рис. изображены наиболее часто встречающиеся виды тентов. Они представляют собой криволинейные поверхности (гипары), седловидные поверхности и др. Тент может быть натянут и на многопролетный каркас с наклонными стойками. Такой тент в своей верхней части опирается на опорный трос, соединяющий вершины противостоящих наклонных  стоек, а в нижней части прижимается накладным тросом. От величины стрелы провисания опорного троса и стрелы подъема накладного троса зависит и архитектурная форма покрытия.

Тент может иметь сложную поверхность, например, состоящую из взаимно пересекающихся гипаров причем сами линии пересечения, если нет соответствующих накладных тросов, могут быть размытыми, т. е. закругленными. При таком решении концы тента не обязательно должны доходить до уровня грунта, а могут заканчиваться оттяжками, концы которых на некотором расстоянии от покрытия были бы заанкерены в грунт.

ва́нтовые констру́кции

геометрически неизменяемый тип висячей конструкции. Выполнены только из прямолинейных элементов (вантов) и часто называются вантовыми фермами. Как и в висячих конструкциях, все элементы вантовой фермы работают на растяжение, что позволяет использовать в качестве несущих частей фермы канаты из стальной проволоки. Вантовые фермы применяют в конструкциях мостов, где проезжая часть подвешивается на множестве косых тросов, крепящих её к высоким пилонам. При этом тросы натянуты от верхней точки пилона или от разных его уровней и расходятся веерообразно или параллельно, подобно струнам арфы. В вантовых мостах тросы делают предварительно напряжёнными, поэтому они предельно натянуты, не провисают и делают всё сооружение геометрически неизменяемым. При такой конструкции балка моста под проезжей частью может быть непривычно тонкой, поэтому вантовый мост является одним из самых экономичных и изящных мостов.

35. купола своды оболочки складки.

Тонкостенными пространственными конструкциями называют такие конструкции, пространственная форма которых обеспечивает их жесткость и устойчивость, что позволяет их толщину доводить до минимальных размеров. К ним относят оболочки и складки. Оболочками называются геометрические тела, ограниченные криволинейными поверхностями, расстояния между которыми малы по сравнению с другими их размерами. Складки в отличие от оболочек состоят из плоских тонкостенных плит, жестко соединенных между собой под некоторым углом. Оболочки бывают одинарной и двоякой кривизны. Первые представляют собой цилиндрические или конические поверхности. Оболочки двоякой кривизны могут быть и оболочками вращения с криволинейной образующей (купол, гиперболический параболоид, эллипсоид вращения, По структуре оболочки бывают гладкие, волнистые, ребристые и сетчатые (рис. 9,25). Они могут быть монолитными и сборными. В сборных конструкциях помимо железобетона используют асбестоцемент, металл и пластик. Цилиндрические оболочки (рис 9.25, а, 6) опираются на торцовые и промежуточные диафрагмы, которые жестко с ними связаны и обеспечивают тем самым устойчивость всей оболочки. Бочарные оболочки (рис. 9.25. е,ж) в отличие от цилиндрических имеют продольную ось не прямолинейную, а изогнутую по кривой с выпуклостью кверху, которая чаще всего очерчена по окружности. Сферические оболочки представляют собой часть поверхности шара и чаще всего имеют форму купола, опирающегося по всему периметру или на отдельно стоящие опоры, расположенные по периметру. Они могут быть монолитными и сборными,

34.пневматические конструкции. Пневматическими конструкциями называют мягкие оболочки, несущие функции которых обеспечиваются воздухом, находящимся внутри них под некоторым избыточным давлением. Материалом   для таких покрытии служит воздухонепроницаемая ткань, синтетическая, обычно армированная, пленка.

Большие преимущества пневматических конструкций перед другими видами покрытий заключаются в небольшом весе и объеме, которые они имеют в ненадутом воздухом состоянии. Это  значительно   облегчает  их транспортировку и монтаж, который проводится без сложного строительного оборудования.

Все пневматические конструкции покрытий можно разделить на две резко различающиеся между собой группы: на воздухоопорные оболочки и воздухонесомые покрытия. Избыточное давление воздуха у первых находится под покрытием, а у вторых оно находится только в несущих пневмобаллонах (рис. XII.36, а—е).

Цилиндрические     воздухоопорные оболочки   выполняются   обычно   со стрелой   подъема,   равной от 3/8   до 1/2 пролета. Торцы заканчиваются либо сферической, либо цилиндрической поверхностью. Каждая такая оболочка состоит из следующих основных частей: шлюзов для  перехода, оболочки, под которой  находится избыточное давление воздуха, и вентилятора, поддерживающего это давление. Шлюзы обычно выполняют в виде легкого металлического   каркаса,  обтянутого той же   тканью, из которой сделана оболочка.  Соединяется ткань шлюза с тканью оболочки с помощью переходника, т. е. ткани соответствующего раскроя. Освещаются помещения под пневмооболочками    дневным   светом через свегопрозрачные вставки из соответствующих синтетических пленок. В нижней части оболочки устраивается так называемый силовой пояс, с помощью которого оболочка крепится к основанию.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]