
- •Содержание
- •Введение
- •1 Моделирование прочностной надежности элементов конструкций
- •1.1 Основные понятия сопротивления материалов
- •1.2 Геометрические характеристики плоских сечений
- •2 Растяжение и сжатие
- •2.1 Внутренние усилия и напряжения при растяжении (сжатии)
- •2.2 Перемещения и деформации при растяжении (сжатии)
- •2.3 Расчеты на прочность и жесткость при растяжении (сжатии)
- •3 Механические свойства материалов
- •3.1 Методика проведения испытаний
- •3.2 Диаграмма растяжения низкоуглеродистой стали
- •3.3 Диаграмма низколегированной стали
- •3.4 Диаграмма растяжения чугуна
- •3.5 Допускаемые напряжения
- •3.6 Основы теории напряженного состояния
- •3.7 Теории прочности
- •3.7.5 Теория Мора
- •4 Сдвиг
- •4.1 Определение внутренних усилий и напряжений при сдвиге
- •4.2 Напряженное состояние при сдвиге
- •4.3 Деформации при сдвиге
- •4.4 Расчет на прочность и допускаемые напряжения при сдвиге
- •5 Кручение
- •5.1 Определение внутренних усилий при кручении
- •5.2 Определение напряжений и деформаций при кручении
- •5.3 Напряженное состояние и виды разрушения при кручении
- •5.4 Расчеты на прочность и жесткость при кручении
- •6 Изгиб
- •6.1 Общие понятия и определения
- •6.2 Определение внутренних усилий при изгибе
- •6.3 Дифференциальные зависимости при изгибе
- •6.4 Нормальные напряжения при чистом изгибе прямого бруса
- •1) Гипотеза плоских сечений (гипотеза Бернулли).
- •6.5 Касательные напряжения при поперечном изгибе прямого бруса
- •6.6 Полная проверка прочности. Опасные сечения и опасные точки
- •7. Сложное сопротивление
- •7.1. Косой изгиб. Общие понятия о косом изгибе
- •7.2. Определение напряжений при косом изгибе
- •7.3 Определение положения нейтральной оси и максимальных нормальных напряжений при косом изгибе. Условие прочности
- •7.4. Изгиб с кручением. Определение внутренних усилий и напряжений
- •7.5. Определение главных напряжений и расчет на прочность при кручении с изгибом
- •8. Устойчивость сжатых стержней
- •8.1 Понятие об устойчивости и критической силе
- •8.2 Устойчивость сжатого стержня. Задача Эйлера
- •8.3. Зависимость критической силы от условий закрепления стержня
- •8.4. Критические напряжения. Расчет на устойчивость стержня при упруго-пластических деформациях
- •8.5 Определение допускаемых напряжений на устойчивость. Коэффициент снижения основного допускаемого напряжения
- •8.6 Выбор материала и рациональной формы сечения при продольном изгибе
- •9 Прочность материалов при циклически меняющихся напряжениях
- •9.1 Основные понятия и определения
- •9.2 Виды циклов нагружения
- •9.3. Кривая усталости (кривая Веллера)
- •9.4 Предел выносливости при асимметричном цикле
- •Список литературы
7.5. Определение главных напряжений и расчет на прочность при кручении с изгибом
Подставив величины максимальных нормальных и касательных напряжений в формулу для главных напряжений, получим:
(7.22)
Расчет брусьев при изгибе с кручением проводится с применением теорий прочности. При этом расчет элементов из пластичных материалов выполняется на основе III или IV теорий прочности, а из хрупких – по теории Мора.
Проанализируем расчет на прочность по III теории прочности
(7.23)
Подставляя в эту формулу выражения для главных напряжений, получим:
(7.24)
Запишем условие прочности через крутящий и изгибающий моменты, учитывая, что для круглого сечения Wp=2·Wос:
(7.25)
Выражение под корнем называют приведенным (эквивалентным) моментом по третьей теории:
(7.25)
Окончательно условие прочности запишем в виде
(7.26)
Проанализируем расчет на прочность по IV теории прочности
(7.27)
(7.28)
Приведенный (эквивалентный) момент по четвертой теории:
(7.29)
Окончательно условие прочности запишем в виде
(7.30)
8. Устойчивость сжатых стержней
8.1 Понятие об устойчивости и критической силе
P
Устойчивость – способность тела сохранять первоначальную форму равновесия под действием внешних нагрузок.
Обычно потеря устойчивости системы сопровождается большими перемещениями, возникновением пластических деформаций или разрушением. Возможны также случаи, когда система, потеряв устойчивость, переходит в режим незатухающих колебаний. Особая опасность потери устойчивости заключается в том, что она происходит внезапно и при низких значениях напряжений, когда прочность материала еще далеко не исчерпана.
При анализе устойчивости конструкций следует различать устойчивое и неустойчивое равновесие системы.
П
Рис.
8.2. Равновесие системы
При неустойчивом равновесии тело, выведенное какой-либо силой из своего первоначального положения, продолжает деформироваться в направлении данного ему отклонения, и, после удаления внешнего воздействия, в исходное состояние не возвращается. В этом случае говорят, что произошла потеря устойчивости.
Между этими двумя состояниями существует переходное состояние, называемое критическим, при котором деформированное тело находится в безразличном равновесии: оно может сохранить первоначальную форму, но может и потерять ее от самого незначительного возмущения.
Критическая сила (Ркр) – нагрузка, превышение которой вызывает потерю устойчивости первоначальной формы (положения) тела.
С момента наступления критического состояния до момента разрушения деформации системы нарастают крайне быстро, и практически нет времени принять меры по предотвращению грозящей катастрофы. Таким образом, при расчете на устойчивость критическая нагрузка подобна разрушающей при расчете на прочность.
При этом условие устойчивости можно записать в следующем виде:
Pmax ≤ Pкр, (8.1)
или в напряжениях
. (8.2)