- •Минобрнауки россии
- •Содержание
- •Раздел I теория вероятностей 8
- •Раздел II математическая статистика 73
- •Введение
- •Раздел I теория вероятностей
- •Правило суммы
- •Правило произведения
- •Формулы комбинаторики
- •Размещения без повторения
- •Перестановки без повторений
- •Сочетания без повторений
- •Размещения с повторением
- •Сочетания с повторением
- •Перестановки с повторением
- •Лекция 2. Пространство элементарных событий. Классическое определение вероятности
- •Пространство элементарных событий
- •Свойства вероятности
- •Лекция 3. Различные определения вероятностей Статистическое определение вероятности
- •Геометрическая вероятность
- •Парадокс Бертрана
- •Аксиоматическое построение теории вероятностей
- •Лекция 4. Условная вероятность. Теорема умножения. Независимые события. Формула полной вероятности
- •Независимые события. Теорема умножения
- •Формула полной вероятности
- •Формула Бейеса
- •Лекция 5. Независимые испытания. Формула Бернулли.
- •Формула Бернулли
- •Наивероятнейшее число
- •Локальная предельная теорема Муавра-Лапласа
- •Интегральная предельная теорема Лапласа
- •Лекция 6. Дискретная случайная величина и ее числовые характеристики Виды случайных величин. Способы описания дискретной случайной величины
- •Функция распределения
- •Свойства функции распределения
- •Математическое ожидание и дисперсия дискретной случайной величины
- •Свойства математического ожидания дискретной случайной величины
- •Математическое ожидание и дисперсия некоторых случайных величин
- •Лекция 7. Непрерывная случайная величина и её распределения
- •Нормальное (гауссовское) распределение
- •Равномерное распределение
- •Лекция 8. Математическое ожидание, дисперсия, моменты непрерывной случайной величины
- •Закон больших чисел. Теорема Чебышева. Центральная предельная теорема
- •Лекция 9. Некоторые модели законов распределений, наиболее распространенных в практике статистических исследований
- •1. Биномиальное распределение
- •2. Распределение Пуассона
- •3. Нормальное (гауссовское) распределение
- •4. Логарифмически-нормальное распределение
- •5. Экспоненциальное распределение
- •7. Распределение Стьюдента с степенями свободы
- •8. Распределение Фишера-Снедекора (f-распределение).
- •Раздел II математическая статистика Лекция 1. Генеральная совокупность. Выборка. Способы образования выборки. Статистическая оценка параметров распределения.
- •Задача статистической оценки параметров
- •Точечные оценки основных параметров распределений
- •Лекция 2. Законы распределения выборочных характеристик, используемые при оценке параметров. Интервальные оценки параметров распределения.
- •1. Распределение средней арифметической.
- •2. Распределение Пирсона (- хи квадрат).
- •3. Распределение Стьюдента (t-распределение).
- •Интервальная оценка параметра распределения. Понятие доверительного интервала.
- •Интервальные оценки для генеральной средней.
- •Интервальные оценки для генеральной доли
- •Интервальные оценки для генеральной дисперсии и среднего квадратического отклонения
- •Лекция 3. Проверка статистических гипотез о значении параметров распределения. Понятие статистической гипотезы и статистического критерия.
- •1. Проверка гипотезы о значении генеральной средней нормально распределённой совокупности
- •2. Проверка гипотезы о значении генеральной дисперсии нормально распределённой совокупности.
- •3. Вычисление мощности критерия
- •Мощность критерия при проверке гипотезы о значении генеральной средней
- •Мощность критерия при проверке гипотезы о значении генеральной дисперсии
- •Лекция 4 Гипотезы о виде закона распределения генеральной совокупности
- •Вычисление теоретического ряда частот
- •Понятие о критериях согласия
- •Критерий согласия Пирсона
- •Лекция 5. Элементы корреляционного анализа Задачи корреляционного анализа. Двумерная корреляционная модель
- •Примерные вопросы к экзамену
- •Задачи к экзамену
Формулы комбинаторики
Рассмотрим задачу подсчета числа выборок из данного множества в общем виде. Пусть имеется некоторое множество N, состоящее из n элементов. Любое подмножество, состоящее из m элементов можно рассматривать без учета их порядка, так и с его учетом, т.е. при изменении порядка переходим к другой m – выборке.
Сформулируем следующие определения:
Размещения без повторения
Размещением без повторения из n элементов по m называется всякое упорядоченное подмножество множества N, содержащее m различных элементов.
Из определения следует, что два размещения отличаются друг от друга, как элементами, так и их порядком, даже если элементы одинаковы.
Теорема 3. Число размещений без повторения равно произведению m сомножителей, наибольшим из которых является число n. Записывают:
Перестановки без повторений
Перестановками из n элементов называются различные упорядочения множества N.
Из этого определения следует, что две перестановки отличаются только порядком элементов и их можно рассматривать как частный случай размещений.
Теорема 4. Число различных перестановок без повторений вычисляется по формуле
Сочетания без повторений
Сочетанием без повторения из n элементов по m называется любое неупорядоченное подмножество множества N, содержащее m различных элементов.
Из определения следует, что два сочетания различаются только элементами, порядок не важен.
Теорема 5. Число сочетаний без повторений вычисляют по одной из следующих формул:
Пример 1. В комнате 5 стульев. Сколькими способами можно разместить на них
а) 7 человек; б) 5 человек; в) 3 человека?
Решение: а) Прежде всего надо выбрать 5 человек из 7 для посадки на стулья. Это можно сделать способом. С каждым выбором конкретной пятерки можно произвестиперестановок местами. Согласно теореме умножения искомое число способов посадки равно.
Замечание: Задачу можно решать, используя только теорему произведения, рассуждая следующим образом: для посадки на 1-й стул имеется 7 вариантов, на 2-й стул-6 вариантов, на 3-й -5, на 4-й -4 и на 5-й -3. Тогда число способов посадки 7 человек на 5 стульев равно . Решения обоими способами согласуются, так как
б) Решение очевидно -
в) - число выборов занимаемых стульев.
- число размещений трех человек на трех выбранных стульях.
Общее число выборов равно .
Не трудно проверить формулы ;
;
- число всех подмножеств множества, состоящего из n элементов.
Размещения с повторением
Размещением с повторением из n элементов по m называется всякое упорядоченное подмножество множества N, состоящее из m элементов так, что любой элемент ожжет входить в это подмножество от 1 до m раз, либо вообще в нем отсутствовать.
Число размещений с повторением обозначают и вычисляют по формуле, представляющей собой следствие из теоремы умножения:
Пример 2. Пусть дано множество из трех букв N = {a, b, c}. Назовем словом любой набор из букв, входящих в это множество. Найдем количество слов длиной 2, которые можно составить из этих букв: .
Замечание: Очевидно, размещения с повторением можно рассматривать и при .
Пример 3. Требуется из букв {a, b}, составить всевозможные слова длиной 3. Сколькими способами это можно сделать?
Ответ: