- •Минобрнауки россии
- •Содержание
- •Раздел I теория вероятностей 8
- •Раздел II математическая статистика 73
- •Введение
- •Раздел I теория вероятностей
- •Правило суммы
- •Правило произведения
- •Формулы комбинаторики
- •Размещения без повторения
- •Перестановки без повторений
- •Сочетания без повторений
- •Размещения с повторением
- •Сочетания с повторением
- •Перестановки с повторением
- •Лекция 2. Пространство элементарных событий. Классическое определение вероятности
- •Пространство элементарных событий
- •Свойства вероятности
- •Лекция 3. Различные определения вероятностей Статистическое определение вероятности
- •Геометрическая вероятность
- •Парадокс Бертрана
- •Аксиоматическое построение теории вероятностей
- •Лекция 4. Условная вероятность. Теорема умножения. Независимые события. Формула полной вероятности
- •Независимые события. Теорема умножения
- •Формула полной вероятности
- •Формула Бейеса
- •Лекция 5. Независимые испытания. Формула Бернулли.
- •Формула Бернулли
- •Наивероятнейшее число
- •Локальная предельная теорема Муавра-Лапласа
- •Интегральная предельная теорема Лапласа
- •Лекция 6. Дискретная случайная величина и ее числовые характеристики Виды случайных величин. Способы описания дискретной случайной величины
- •Функция распределения
- •Свойства функции распределения
- •Математическое ожидание и дисперсия дискретной случайной величины
- •Свойства математического ожидания дискретной случайной величины
- •Математическое ожидание и дисперсия некоторых случайных величин
- •Лекция 7. Непрерывная случайная величина и её распределения
- •Нормальное (гауссовское) распределение
- •Равномерное распределение
- •Лекция 8. Математическое ожидание, дисперсия, моменты непрерывной случайной величины
- •Закон больших чисел. Теорема Чебышева. Центральная предельная теорема
- •Лекция 9. Некоторые модели законов распределений, наиболее распространенных в практике статистических исследований
- •1. Биномиальное распределение
- •2. Распределение Пуассона
- •3. Нормальное (гауссовское) распределение
- •4. Логарифмически-нормальное распределение
- •5. Экспоненциальное распределение
- •7. Распределение Стьюдента с степенями свободы
- •8. Распределение Фишера-Снедекора (f-распределение).
- •Раздел II математическая статистика Лекция 1. Генеральная совокупность. Выборка. Способы образования выборки. Статистическая оценка параметров распределения.
- •Задача статистической оценки параметров
- •Точечные оценки основных параметров распределений
- •Лекция 2. Законы распределения выборочных характеристик, используемые при оценке параметров. Интервальные оценки параметров распределения.
- •1. Распределение средней арифметической.
- •2. Распределение Пирсона (- хи квадрат).
- •3. Распределение Стьюдента (t-распределение).
- •Интервальная оценка параметра распределения. Понятие доверительного интервала.
- •Интервальные оценки для генеральной средней.
- •Интервальные оценки для генеральной доли
- •Интервальные оценки для генеральной дисперсии и среднего квадратического отклонения
- •Лекция 3. Проверка статистических гипотез о значении параметров распределения. Понятие статистической гипотезы и статистического критерия.
- •1. Проверка гипотезы о значении генеральной средней нормально распределённой совокупности
- •2. Проверка гипотезы о значении генеральной дисперсии нормально распределённой совокупности.
- •3. Вычисление мощности критерия
- •Мощность критерия при проверке гипотезы о значении генеральной средней
- •Мощность критерия при проверке гипотезы о значении генеральной дисперсии
- •Лекция 4 Гипотезы о виде закона распределения генеральной совокупности
- •Вычисление теоретического ряда частот
- •Понятие о критериях согласия
- •Критерий согласия Пирсона
- •Лекция 5. Элементы корреляционного анализа Задачи корреляционного анализа. Двумерная корреляционная модель
- •Примерные вопросы к экзамену
- •Задачи к экзамену
7. Распределение Стьюдента с степенями свободы
(t-распределение)
В нормальном распределении средняя арифметическая зависит от дисперсии слагаемых величин. Однако на практике дисперсия исследуемой величины, как правило, неизвестна. В этой связи возникла задача определения закона распределения , не зависящего от, которую решил английский статистик В. Госсет, публиковавшийся под псевдонимом Стьюдент. Дадим следующее определение:
Если случайная величина Z имеет нормальное нормированное распределение N(0,1), а величина U2 имеет распределение сстепенями свободы, причемZ и U взаимно независимы, то случайная величина
имеет t-распределение с степенями свободы. Плотность распределения описывается формулой
.
Функция плотности является унимодальной и симметричной относительно . Основные числовые характеристики:
среднее, мода, медиана: ;
дисперсия: ;
асимметрия: ;
эксцесс: .
Ниже на рисунке приведены сравнительные графики функции плотности t-распределения при и стандартного нормального распределенияN(0,1).
Рис. 9.2.График t-распределения при и нормального нормированного распределения
Если из генеральной совокупности Х с нормальным законом распределения взята случайная выборка объёмаn, то статистика
имеет распределение Стьюдента с степенями свободы. ЗдесьS-выборочное среднее квадратическое отклонение.
Распределение Стьюдента используется при интервальной оценке математического ожидания при неизвестном значении среднего квадратического отклонения .
8. Распределение Фишера-Снедекора (f-распределение).
Пусть имеются две независимые случайные величины иимеющие-распределение соответственно со степенями свободыи. Тогда величина
имеет F-распределение с истепенями свободы, причем, так что.
Это распределение впервые было построено английским статистиком Р. Фишером. Американский статистик Дж. Снедекор составил таблицы для данного распределения, поэтому его часто называют распределением Фишера-Снедекора.
Используется в дисперсионном анализе при проверке статистических гипотез.
Раздел II математическая статистика Лекция 1. Генеральная совокупность. Выборка. Способы образования выборки. Статистическая оценка параметров распределения.
В математической статистике множество возможных значений случайной величины Х называют генеральной совокупностью случайной величины Х или просто генеральной совокупностью Х.
Исходным материалом для изучения свойств генеральной совокупности являются экспериментальные (статистические) данные, под которыми понимают значения случайной величины, полученные в результате независимых повторных наблюдений (имеется ввиду, что эксперимент может, хотя бы теоретически, быть повторен сколько угодно раз в одних и тех же условиях).
Совокупность независимых случайных величин Х1, … , Хn , имеющих на множествах исходов 1, … , n-го экспериментов (наблюдений) то же распределение, что и случайная величина Х, называется случайной выборкой. При этом число n называют объемом выборки. Любое возможное значение (х1 , … , хn) случайной выборки - эмпирическим рядом, а числа хi его вариантами. При этом некоторые варианты могут повторяться. Число повторений вариант называют эмпирической частотой и обозначают ni (или mi). Таблица, в которой варианты записаны по одному разу и в порядке возрастания, а также указаны их частоты или частости , называемыевесами, называется вариационным дискретным рядом.
Пример 1. В течении суток измеряют напряжение Х тока в электросети в вольтах. В результате опыта получена выборка объема n = 30:
107 108 110 109 110 111 109 110 111 107
108 109 110 108 107 110 109 111 111 110
109 112 113 110 106 110 109 110 108 112
Построим вариационный ряд этой выборки.
Наименьшее значение в выборке х1 = 106, наибольшее – х8 = 113. Подсчитываем частоту каждого хi, i = 1,…, 8 и строим таблицу 1.1.
-
хi
106
107
108
109
110
111
112
113
ni
1
3
4
6
9
4
2
1
При большом объеме выборки ( свыше 50 ) исходные данные рассматривают на интервале J = ( х1, хn). Этот интервал разбивают на m промежутков равной длины . При этом считают, что каждый промежуток содержит свой левый конец, но лишь последний содержит и правый. При таком соглашении каждая точка отрезкаJ содержится в одном и только в одном интервале Jk. Далее, для каждого промежутка Jk, k = 1,…, m подсчитывается число элементов выборки попавших в него, а результаты представляют в виде таблицы 1.2., которую называют интервальным рядом.
Таблица 1.2.
-
J1
J2
. . .
Jm
n1
n2
. . .
nm
В зависимости от того, является ли генеральная случайная величина Х дискретной или непрерывной, результаты выборки записывают в виде вариационного или интервального рядов. Для интервального ряда вводят понятие эмпирической плотности распределения, как функции, определяемой формулой:
и равна 0, если .
График функции плотности называют гистограммой.