Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
232
Добавлен:
09.04.2015
Размер:
942.02 Кб
Скачать

АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ

К ароматическим соединениям, или аренам, относится большая группа соединений, молекулы которых содержат устойчивую циклическую группировку (бензольное кольцо), обладающую особыми физическими и химическими свойствами.

К таким соединениям относятся прежде всего бензол и его многочисленные производные.

Термин "ароматические" вначале использовался применитель­но к продуктам природного происхождения, которые имели ароматный запах. Поскольку среди этих соединений было много таких, которые включали бензольные кольца, термин "аромати­ческие" стали применять к любым соединениям (в том числе имеющих и неприятный запах), содержащих бензольное кольцо.

Бензол, его электронное строение

По формуле бензола С6Н6 можно предположить, что бензол является сильно ненасыщенным соединением, аналогич­ным, например, ацетилену. Однако химические свойства бензола не подтверждают такого предположения. Так, при обыч­ных условиях, бензол не дает реакций, характерных для непре­дельных углеводородов: не вступает в реакции присоединения с галогенводородами, не обесцвечивает раствор марганцево-кислого калия. В то же время бензол вступает в реакции заме­щения аналогично предельным углеводородам.

Эти факты говорят о том, что, бензол частично сходен с предельными, частично с непредельными углеводородами и в то же время отличается от тех и других. Поэтому в течение длительного времени между учеными происходили оживленные дискуссии по вопросу о строении бензола.

В 60-е гг. прошлого столетия большинство химиков признали теорию циклического строения бензола на основании факта, что однозамещенные производные бензола (например, бромбензол) не имеют изомеров.

Наибольшее признание получила формула бензола, предло­женная в 1865 г. немецким химиком Кекуле, в которой двой­ные связи в кольце углеродных атомов бензола чередуются с простыми, причем, по гипотезе Кекуле, простые и двойные связи непрерывно перемещаются:

Однако формула Кекуле не может объяснить, почему бензол не проявляет свойств непредельных соединений.

Согласно современным представлениям молекула бензола имеет строение плоского шестиугольника, стороны которого равны между собой и составляют 0,140 нм. Это расстояние является средним значением между величинами 0,154 нм (длина одинарной связи) и 0,134 нм (длина двойной связи). Не только углеродные атомы, но и связанные с ними шесть атомов водорода лежат в одной плоскости. Углы, образован­ные связями Н — С — С и С — С — С равны 120 °.

Атомы углерода в бензоле находятся в sр2-гибрндизации, т.е. из четырех орбиталей атома углерода гибридизированными являются только три (одна 2s- и две 2 р-), которые принимают участие в образовании σ-связей между углеродными атомами. Четвертая 2 р-орбиталь перекрывается с 2 р -орбиталями двух соседних углеродных атомов (справа и слева), шесть делокализованных π-электронов, находящихся на гантелеобразных орбиталях, оси которых перпендикулярны плоскости бензольного кольца, образуют единую устойчивую замкнутую электронную систему.

В результате образования замкнутой электронной системы всеми шестью углеродными атомами, происходит "выравнивание" про­стых и двойных связей, т.е. в молекуле бензола отсутствуют классические двойные и одинарные связи. Равномерное распре­деление π-электронной плотности между всеми углеродными атомами и является причиной высокой устойчивости молекулы бензола. Чтобы подчеркнуть выравненность π-электронной плотности в молекуле бензола, прибегают к такой формуле:

Номенклатура и изомерия ароматических углеводородов ряда бензола

Общая формула гомологического ряда бензола СnН2n-6.

Первый гомолог бензола — метилбензол, или толуол, С7Н8

не имеет изомеров положения, как и все другие однозамещенные производные.

Второй гомолог С8Н10 может существовать в четырех изомерных формах: этилбензол С6Н5—С2Н5 и три диметилбензола, или ксилола, СбН4(СН3)2 (орто-, мета- и пара-ксилолы, или 1,2-, 1,3- и 1,4-диметилбензолы):

Радикал (остаток) бензола С6Н5— носит название фенил; названия радикалов гомологов бензола производят от названий соответствующих углеводородов, до­бавляя к корню суффикс -ил (толил, ксилил и т. д.) и обозна­чая буквами (о-, м-, п-) или цифрами положение боковых це­пей. Общее название для всех ароматических радикалов арилы аналогично названию алкилы для радикалов алканов. Ра­дикал С6Н5—СН2— называется бензил.

Называя более сложные производные бензола из возможных порядков ну­мерации выбирают тот, при котором сумма цифр номеров за­местителей будет наименьшей. Например, диметил этил бензол строения

следует назвать1,4-диметил-2-этилбензол (сумма цифр равна 7), а не 1,4-диметил-6-этилбензол (сумма цифр равна 11).

Названия высших гомологов бензола часто производят не от названия ароматического ядра, а от названия боковой цепи, т. е. рассматривают их как производные алканов:

Физические свойства ароматических углеводородов ряда бензола

Низшие члены гомологического ряда бензола представля­ют собой бесцветные жидкости с характерным запахом. Плот­ность и показатель преломления у них значительно выше, чем у алканов и алкенов. Температура плавления тоже заметно выше. Из-за высокого содержания углерода все аро­матические соединения горят сильно коптящим пламенем. Все ароматические углеводороды нерастворимы в во­де и хорошо растворимы в большинстве органических раствори­телей: многие из них хорошо перегоняются с водяным паром.

Химические свойства ароматических углеводородов ряда бензола

Для ароматических углеводородов наиболее характерны реак­ции замещения водорода в ароматическом кольце. В реакции присоединения ароматические углеводороды вступают с боль­шим трудом при жестких условиях. Отличительной особеннос­тью бензола является его значительная стойкость по отношению к окислителям.

Реакции присоединения

  1. Присоединение водорода

В отдельных ред­ких случаях бензол способен к реакциям присоединения. Гид­рирование, т. е. присоединение водорода, происходит при дей­ствии водорода в жестких условиях в присутствии катализато­ров (Ni, Pt, Pd). При этом молекула бензола присоединяет три молекулы водорода с образованием циклогексана:

  1. Присоединение галогенов

Если раствор хлора в бензоле подвергнуть действию солнечно­го света или ультрафиолетовых лучей, то происходит ради­кальное присоединение трех молекул галогена с образованием сложной смеси стереоизомеров гексахлорциклогексана:

Гексахлорциклогексаи (товарное название гексахлоран) в на­стоящее время находит применение как инсектицид — вещества, уничтожающие насекомых, являющихся вредителями сельского хозяйства.

Реакции окисления

Бензол еще более стоек к действию окислителей, чем предельные углеводороды. Он не окисляется разбавленной азотной кислотой, раствором КМпО4 и т.д. Гомологи бензола окисляются значительно легче. Но и в них бензольное ядро относительно более устойчиво к действию окислителей, чем соединенные с ним углеводородные радикалы. Существует пра­вило: любой гомолог бензола с одной боковой цепью окисляется в одноосновную (бензойную) кислоту:

Гомологи бензола с несколькими боковыми цепями любой сложности окисляются с образованием многоосновных аромати­ческих кислот:

Реакции замещения

1. Галогенирование

В обычных условиях ароматические углеводороды практически не реагируют с гало­генами; бензол не обесцвечивает бромной воды, но в присутствии катализаторов (FeCl3, FеВг3, АlCl3) в безводной среде хлор и бром энергично вступают в реакцию с бензолом при комнатной температуре:

  1. Реакция нитрования

Для реакции применяют концентри­рованную азотную кислоту, часто в смеси с концентрированной серной кислотой (катализатор):

В незамещенном бензоле реакционная способность всех шести атомов углерода в реакциях замещения одинакова; заместители могут присоединяться к любому углеродному атому. Если же в бензольном ядре уже имеется заместитель, то под его влиянием состояние ядра изменяется, и положение, в которое вступает любой новый заместитель, зависит от природы первого замести­теля. Из этого следует, что каждый заместитель в бензольном ядре проявляет определенное направляющее (ориентирующее) влияние и способствует введению новых заместителей лишь в определенные по отношению к себе положения.

По направляющему влиянию различные заместители подраз­деляются на две группы:

а) заместители первого рода:

Они направляют любой новый заместитель в орто- и пара-по­ложения по отношению к себе. При этом они почти все умень­шают устойчивость ароматической группировки и облегчают как реакции замещения, так и реакции бензольного ядра:

б) заместители второго рода:

Они направляют любой новый заместитель в мета-положение по отношению к себе. Они увеличивают устойчивость аромати­ческой группировки и затрудняют реакции замещения:

Таким образом, ароматический характер бензола (и других аренов) выражается в том, что это соединение, по составу яв­ляясь непредельным, в целом ряде химических реакций про­являет себя как предельное соединение, для него характерны химическая устойчивость, трудность реакций присоединения. Только в особых условиях (катализаторы, облучение) бензол ведет себя так, как будто в его молекуле имеются три двойные связи.

3

Соседние файлы в папке органическая химия