Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика_1 / _______1.doc
Скачиваний:
134
Добавлен:
09.04.2015
Размер:
9.18 Mб
Скачать

9.2. Соотношение неопределенностей Гейзенберга

Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной х, расположенную перпендикулярно к направлению движения частицы. До прохождения частицы через щель рх имеет точное значение, равное 0, так что неопределенность импульса рх= 0, зато координата х частицы является совершенно неопределенной. В момент прохождения частицы через щель положение меняется. Вместо полной неопределенности координаты х появляется неопределенность х, но это достигается ценой утраты определенности значения рх. Действительно, вследствии дифракции имеется некоторая вероятность того, что частица будет двигаться в пределах некоторого угла 2, где – угол, соответствующий первому дифракционному минимуму. Таким образом, появляется неопределенность импульса

рх=рsin . (8)

Краю центрального дифракционного максимума (первому минимуму), получающемуся от щели шириной х соответствует угол , для которого [cм. (4.8) при b=х и m=1]

sin=/ х. (9)

Следовательно,

рх/ х. (10)

Отсюда с учетом (1) получается соотношение

хрх=h (11)

В общем случае соотношение

хрх h, yрy h, zрz h (12)

называют соотношением неопределенностей Гейзенберга.

Из него следует, что чем точнее определена координата (х мало, т.е. узкая щель), тем больше неопределенность в импульсе частицы рх h/х. Точность определения импульса будет возрастать с увеличением ширины щели х [cм. (9), (8)] и при х не будет наблюдаться дифракционная картина, и поэтому неопределенность импульса рх будет такой же, как и до прохождения частицы через щель, т.е. рх=0. Но в этом случае не определена координата х частицы, т.е. х.

Невозможность одновременно точно определить координату и импульс (скорость) не связана с несовершенством методов измерения или измерительных приборов. Соотношение неопределенности является квантовым ограничением применимости классической механики к микрообъектам.

Выразим (11) в виде

хvх h/m. (13)

Из (13) следует, что чем больше масса частицы, тем меньше неопределенности ее координаты и скорости. Для пылинки массой 10-12 кг и линейными размерами 10-6 м, координата которой определена с точностью до 0.01 от ее размеров (т.е. х=10-8 м) неопределенность скорости согласно (13) vх=6.6210-31/(10-810-12)=6.6210-14 м/c, т.е. будет ничтожно малой. Т. о. для макроскопических тел их волновые свойства не играют никакой роли, координата и скорость макротел могут быть измерены достаточно точно.

В квантовой механике рассматривается также соотношение неопределенностей между энергией частицы Е и временем t нахождения частицы в данном энергетическом состоянии (или времени наблюдения за состоянием частицы). Оно аналогично (11) и имеет вид

Еth. (14)

Из (14) следует, что частота излучения фотона также должна иметь неопределенность

v Е/h, (15)

т.е. линии спектра должны характеризоваться частотой vv. Действительно, опыт показывает, что все спектральные линии размыты.

Соседние файлы в папке Физика_1