Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Общий курс.docx
Скачиваний:
41
Добавлен:
08.04.2015
Размер:
12.67 Mб
Скачать

5) По материалу:

а) железобетонный каркасприменяется при проектировании одноэтажных и многоэтажных гражданских и промышленных зданий. По способу возведения железобетонные каркасы делятся на три типа:

  • сборные;

  • монолитные;

  • сборно-монолитные.

Сборный железобетонный каркасприменяется в основном для возведения общественных и промышленных зданий. На рис. 3.26 и 3.27 показаны типовые железобетонные колонны и ригели, применяемые в сборном каркасе.

Монолитный железобетонный каркас более трудоемок в изготовлении, но он позволяет выполнить разнообразные архитектурные формы, которые невозможны при сборном каркасе. Поэтому данный тип каркаса применяется при проектировании жилых и общественных зданий.

3.26. Железобетонные колонны каркаса:

а– одноэтажные колонны с обычными консолями;б– одноэтажные колонны со скрытыми консолями;в– двухэтажные колонны с обычными консолями;г– двухэтажные колонны со скрытыми консолями;д– двухветвевые колонны одноэтажных промышленных зданий с мостовыми кранами

3.27. Железобетонные ригели каркаса: а– рядовой ригель таврового сечения;б– фасадный ригель «Г»-образного сечения

Сборно-монолитный железобетонный каркас применяется в основном при реконструкции зданий или при выполнении пристроек к существующим зданиям. При этом монолитный бетон используется при замоноличивании стыков сборных элементов, добетонировании ослабленных колонн или ригелей или при выполнении монолитных перекрытий в зданиях со сборными колоннами.

б) металлические каркасы применяются в основном при проектировании одноэтажных промышленных зданий и разделяются на два типа:

  • стальные каркасы:

  • каркасы из алюминиевых сплавов.

Стальной каркас обладает многими достоинствами. По сравнению с железобетонным каркасом он характеризуется значительно меньшей массой при равной несущей способности, высокой технологичностью, легкостью усиления конструкций. Стальной каркас используют при проектировании промышленных зданий большой высоты (более 18 м), с мостовыми кранами большой грузоподъемности (более 50 тонн), а также в неотапливаемых зданиях.

На рис. 3.28 показаны основные типы колонн стального каркаса.

Каркас из алюминиевых сплавов имеет массу в 3 раза меньшую, чем стальной при той же прочности, легко формуется и обрабатывается. Алюминиевые сплавы применяются ограниченно из-за высокого коэффициента температурного расширения, ухудшения механических свойств при повышении температуры и большой стоимости.

в) деревянный каркас применяется при проектировании одноэтажных гражданских и промышленных зданий. При этом конструктивные элемента каркаса изготавливаются из многослойной клееной древесины, брусьев, досок или бревен. К достоинствам деревянного каркаса относится небольшая масса, малая теплопроводность и температурное расширение, стойкость в агрессивных химических средах, легкость изготовления и обработки. Недостатки – малая стойкость к воздействию огня и влажности.

На рис. 3.29 показаны конструкции деревянных каркасов, применяемых при возведении одноэтажных промышленных зданий.

Рис. 3.28. Стальные колонны промышленных зданий с мостовыми кранами: а – одноветвевые;б– двухветвевые

г) смешанный каркас применяется при проектировании промышленных зданий. В этом случае колонны выполняются железобетонными, т. к. этот материал хорошо работает на сжатие, а покрытие – из стальных или деревянных ферм или балок (хорошо работают на изгиб).

Связи в каркасных зданиях могут быть двух видов: диафрагмы жесткости в виде железобетонных панелей сплошного сечения и металлические решетчатые связи.

Диафрагмы жесткости применяются в гражданских и промышленных зданиях с железобетонным каркасом, а металлические связи – в основном в промышленных зданиях с железобетонным, металлическим или деревянным каркасом.

Вертикальные диафрагмы жесткости проектируются на всю высоту здания, начиная от обреза фундамента. Они представляют собой железобетонные стенки, которые устанавливаются между колонн и соединяются с ними сваркой закладных деталей. Совместная работа диафрагм жесткости и колонн обеспечивается путем замоноличивания горизонтальных и вертикальных швов между ними бетоном высокого класса прочности. Вертикальные диафрагмы жесткости проектируются внутри здания в продольном и поперечном направлениях с шагом 24  36 м.

Горизонтальные диафрагмы жесткости образуются путем сварки и замоноличивания стыков между плитами перекрытий зданий. Благодаря этому образуется единый диск перекрытия, который воспринимает горизонтальные нагрузки в здании и передает их на колонны. Горизонтальные диафрагмы жесткости проектируются для обеспечения общей жесткости каркаса и устанавливаются через несколько этажей здания.

Выбор материала каркаса производится в результате комплексного анализа всех положительных и отрицательных качеств, которые должны обеспечивать прочность, надежность, долговечность и технологичность возведения здания.

Рис. 3.29. Каркасы из клееной древесины: а– стрельчатая арка;б– рама, состоящая из двух полурам